Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(6): e1009127, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138874

RESUMO

During meiosis I, ring-shaped cohesin complexes play important roles in aiding the proper segregation of homologous chromosomes. RAD21L is a meiosis-specific vertebrate cohesin that is required for spermatogenesis in mice but is dispensable for oogenesis in young animals. The role of this cohesin in other vertebrate models has not been explored. Here, we tested if the zebrafish homolog Rad21l1 is required for meiotic chromosome dynamics during spermatogenesis and oogenesis. We found that Rad21l1 localizes to unsynapsed chromosome axes. It is also found between the axes of the mature tripartite synaptonemal complex (SC) in both sexes. We knocked out rad21l1 and found that nearly all rad21l1-/- mutants develop as fertile males, suggesting that the mutation causes a defect in juvenile oogenesis, since insufficient oocyte production triggers female to male sex reversal in zebrafish. Sex reversal was partially suppressed by mutation of the checkpoint gene tp53, suggesting that the rad21l1 mutation activates Tp53-mediated apoptosis or arrest in females. This response, however, is not linked to a defect in repairing Spo11-induced double-strand breaks since deletion of spo11 does not suppress the sex reversal phenotype. Compared to tp53 single mutant controls, rad21l1-/- tp53-/- double mutant females produce poor quality eggs that often die or develop into malformed embryos. Overall, these results indicate that the absence of rad21l1-/- females is due to a checkpoint-mediated response and highlight a role for a meiotic-specific cohesin subunit in oogenesis but not spermatogenesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Oogênese/fisiologia , Espermatogênese/fisiologia , Peixe-Zebra/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico , Feminino , Genes p53 , Gônadas/anatomia & histologia , Masculino , Mutação , Peixe-Zebra/fisiologia , Coesinas
2.
iScience ; 27(2): 108984, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327800

RESUMO

Olaparib is a pioneering PARP inhibitor (PARPi) approved for treating castration-resistant prostate cancer (CRPC) tumors harboring DNA repair defects, but clinical resistance has been documented. To study acquired resistance, we developed Olaparib-resistant (OlapR) cell lines through chronic Olaparib treatment of LNCaP and C4-2B cell lines. Here, we found that IGFBP3 is highly expressed in acquired (OlapR) and intrinsic (Rv1) models of Olaparib resistance. We show that IGFBP3 expression promotes Olaparib resistance by enhancing DNA repair capacity through activation of EGFR and DNA-PKcs. IGFBP3 depletion enhances efficacy of Olaparib by promoting DNA damage accumulation and subsequently, cell death in resistant models. Mechanistically, we show that silencing IGFBP3 or EGFR expression reduces cell viability and resensitizes OlapR cells to Olaparib treatment. Inhibition of EGFR by Gefitinib suppressed growth of OlapR cells and improved Olaparib sensitivity, thereby phenocopying IGFBP3 inhibition. Collectively, our results highlight IGFBP3 and EGFR as critical mediators of Olaparib resistance.

3.
Cancer Res Commun ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440945

RESUMO

Olaparib, a PARP inhibitor, is a targeted therapy used in treating various cancers including castration-resistant prostate cancer (CRPC). Despite its efficacy, resistance to Olaparib remains a significant challenge. Understanding the molecular mechanisms underpinning this resistance is crucial for developing more effective treatment strategies. This study focuses on elucidating the role of mitochondrial alterations and the PINK1 gene in conferring Olaparib resistance in CRPC cells. We investigated the transcriptomic and functional differences in mitochondrial activity between Olaparib-resistant (2B-OlapR, LN-OlapR) and treatment naïve prostate cancer (PCa) cells (C4-2B, LNCaP) in both castration sentitive and resistant settings. Through RNA sequencing and Gene Set Enrichment Analysis (GSEA), we identified significant enrichment of mitochondrial and oxidative phosphorylation-related gene sets in Olaparib Resistant derived cell lines. Resistant lines exhibited enhanced mitochondrial functionality including increased basal and maximal respiration rates, as well as elevated ATP production and spare respiratory capacity compared to parental cells. Subsequent investigations revealed a substantial increase in mitochondrial mass and electron transport chain complex I activity in Olaparib-resistant cells. Furthermore, overexpression of the PINK1 gene was observed in resistant cells, which was correlated with resistance to Olaparib and poor clinical outcomes in prostate cancer patients. Inhibition of PINK1 expression significantly reduced mitochondrial function and mass, impaired cell growth, and decreased resistance to Olaparib. These findings suggest that PINK1 plays a crucial role in modulating mitochondrial dynamics that confer therapeutic resistance, highlighting its potential as a therapeutic target for overcoming Olaparib resistance in PCa.

4.
Cancer Res ; 84(21): 3617-3628, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39088701

RESUMO

The development of resistance to current standard-of-care treatments, such as androgen receptor (AR) targeting therapies, remains a major challenge in the management of advanced prostate cancer. There is an urgent need for new therapeutic strategies targeting key resistant drivers, such as AR variants like AR-V7, and steroidogenic enzymes, such as aldo-keto reductase 1C3 (AKR1C3), to overcome drug resistance and improve outcomes for patients with advanced prostate cancer. Here, we have designed, synthesized, and characterized a novel class of LX compounds targeting both the AR/AR variants and AKR1C3 pathways. Molecular docking and in vitro studies demonstrated that LX compounds bind to the AKR1C3 active sites and inhibit AKR1C3 enzymatic activity. LX compounds were also shown to reduce AR/AR-V7 expression and to inhibit their target gene signaling. LX1 inhibited the conversion of androstenedione into testosterone in tumor-based ex vivo enzyme assays. In addition, LX1 inhibited the growth of cells resistant to antiandrogens including enzalutamide (Enza), abiraterone, apalutamide, and darolutamide in vitro. A synergistic effect was observed when LX1 was combined with antiandrogens and taxanes, indicating the potential for this combination in treating resistant prostate cancer. Treatment with LX1 significantly decreased tumor volume, serum PSA levels, as well as reduced intratumoral testosterone levels, without affecting mouse body weight. Furthermore, LX1 was found to overcome resistance to Enza treatment, and its combination with Enza further suppressed tumor growth in both the CWR22Rv1 xenograft and LuCaP35CR patient-derived xenograft models. Collectively, the dual effect of LX1 in reducing AR signaling and intratumoral testosterone, along with its synergy with standard therapies in resistant models, underscores its potential as a valuable treatment option for advanced prostate cancer. Significance: LX1 simultaneously targets androgen receptor variants and the steroidogenic enzyme AKR1C3, offering a promising approach to combat drug resistance and enhancing therapeutic efficacy in conjunction with standard treatments for advanced prostate cancer.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase , Neoplasias da Próstata , Receptores Androgênicos , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Animais , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Simulação de Acoplamento Molecular , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Nitrilas
5.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958444

RESUMO

Current common treatments for castration-resistant prostate cancer (CRPC) typically belong to one of three major categories: next-generation anti-androgen therapies (NGAT) including enzalutamide, abiraterone acetate, apalutamide, and darolutamide; taxane therapy represented by docetaxel; and PARP inhibitors (PARPi) like olaparib. Although these treatments have shown efficacy and have improved outcomes for many patients, some do not survive due to the emergence of therapeutic resistance. The clinical landscape is further complicated by limited knowledge about how the sequence of treatments impacts the development of therapeutic cross-resistance in CRPC. We have developed multiple CRPC models of acquired therapeutic resistance cell sublines from C4-2B cells. These include C4-2B MDVR, C4-2B AbiR, C4-2B ApaR, C4-2B DaroR, TaxR, and 2B-olapR, which are resistant to enzalutamide, abiraterone, apalutamide, darolutamide, docetaxel, and olaparib, respectively. These models are instrumental for analyzing gene expression and assessing responses to various treatments. Our findings reveal distinct cross-resistance characteristics among NGAT-resistant cell sublines. Specifically, resistance to enzalutamide induces resistance to abiraterone and vice versa, while maintaining sensitivity to taxanes and olaparib. Conversely, cells with acquired resistance to docetaxel exhibit cross-resistance to both cabazitaxel and olaparib but retain sensitivity to NGATs like enzalutamide and abiraterone. OlapR cells, significantly resistant to olaparib compared to parental cells, are still responsive to NGATs and docetaxel. Moreover, OlapR models display cross-resistance to other clinically relevant PARP inhibitors, including rucaparib, niraparib, and talazoparib. RNA-sequencing analyses have revealed a complex network of altered gene expressions that influence signaling pathways, energy metabolism, and apoptotic signaling, pivotal to cancer's evolution and progression. The data indicate that resistance mechanisms are distinct among different drug classes. Notably, NGAT-resistant sublines exhibited a significant downregulation of androgen-regulated genes, contrasting to the stable expression noted in olaparib and docetaxel-resistant sublines. These results may have clinical implications by showing that treatments of one class can be sequenced with those from another class, but caution should be taken when sequencing drugs of the same class.

6.
Mol Cancer Ther ; 21(4): 677-685, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086956

RESUMO

PARP inhibition represents the dawn of precision medicine for treating prostate cancer. Despite this advance, questions remain regarding the use of PARP inhibitors (PARPi) for the treatment of this disease, including (i) how specifically do PARPi-sensitive tumor cells respond to treatment, and (ii) how does PARPi resistance develop? To address these questions, we characterized response to olaparib in sensitive LNCaP and C4-2B cells and developed two olaparib-resistant derivative cell line models from each, termed LN-OlapR and 2B-OlapR, respectively. OlapR cells possess distinct morphology from parental cells and display robust resistance to olaparib and other clinically relevant PARPis, including rucaparib, niraparib, and talazoparib. In LNCaP and C4-2B cells, we found that olaparib induces massive DNA damage, leading to activation of the G2-M checkpoint, activation of p53, and cell-cycle arrest. Furthermore, our data suggest that G2-M checkpoint activation leads to both cell death and senescence associated with p21 activity. In contrast, both LN-OlapR and 2B-OlapR cells do not arrest at G2-M and display a markedly blunted response to olaparib treatment. Interestingly, both OlapR cell lines harbor increased DNA damage relative to parental cells, suggesting that OlapR cells accumulate and manage persistent DNA damage during acquisition of resistance, likely through augmenting DNA repair capacity. Further impairing DNA repair through CDK1 inhibition enhances DNA damage, induces cell death, and sensitizes OlapR cells to olaparib treatment. Our data together further our understanding of PARPi treatment and provide a cellular platform system for the study of response and resistance to PARP inhibition.


Assuntos
Ftalazinas , Neoplasias da Próstata , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Humanos , Masculino , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
7.
Mol Cancer Ther ; 21(10): 1594-1607, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35930737

RESUMO

The next-generation antiandrogen drugs such as enzalutamide and abiraterone extend survival times and improve quality of life in patients with advanced prostate cancer. However, resistance to both drugs occurs frequently through mechanisms that are incompletely understood. Wnt signaling, particularly through Wnt5a, plays vital roles in promoting prostate cancer progression and induction of resistance to enzalutamide and abiraterone. Development of novel strategies targeting Wnt5a to overcome resistance is an urgent need. In this study, we demonstrated that Wnt5a/FZD2-mediated noncanonical Wnt pathway is overexpressed in enzalutamide-resistant prostate cancer. In patient databases, both the levels of Wnt5a and FZD2 expression are upregulated upon the development of enzalutamide resistance and correlate with higher Gleason score, biochemical recurrence, and metastatic status, and with shortened disease-free survival duration. Blocking Wnt5a/FZD2 signal transduction not only diminished the activation of noncanonical Wnt signaling pathway, but also suppressed the constitutively activated androgen receptor (AR) and AR variants. Furthermore, we developed a novel bioengineered BERA-Wnt5a siRNA construct and demonstrated that inhibition of Wnt5a expression by the BERA-Wnt5a siRNA significantly suppressed tumor growth and enhanced enzalutamide treatment in vivo. These results indicate that Wnt5a/FZD2 signal pathway plays a critical role in promoting enzalutamide resistance, and targeting this pathway by BERA-Wnt5a siRNA can be developed as a potential therapy to treat advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/uso terapêutico , Humanos , Masculino , Nitrilas/uso terapêutico , Feniltioidantoína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA Interferente Pequeno/uso terapêutico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Via de Sinalização Wnt , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
8.
Am J Clin Exp Urol ; 10(5): 299-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313205

RESUMO

Resistance to androgen receptor (AR) targeted therapies remains as the main reason for most prostate cancer related deaths. Lineage plasticity resulting in altered, treatment insensitive prostate tumor cell phenotypes such neuroendocrine differentiated prostate cancer is a common manifestation within resistant tumors upon AR-targeted therapies. The mechanisms responsible for lineage plasticity in prostate cancer remain incompletely understood. Here we demonstrate that the enzalutamide resistant MDVR cell line possesses lineage plastic characteristics associated with overexpression of the Wnt transporter Wntless (WLS). Furthermore, we present evidence that overexpression of WLS is common in varying cell line models of lineage plastic prostate cancer, is higher in neuroendocrine patient samples, and positively correlates with the neuroendocrine marker SYP in clinical data. Targeting WLS in lineage plastic cellular models reduces viability and represses lineage plasticity associated gene expression. Our study provides insight into the importance of WLS to the development of lethal resistant prostate cancer and provides a potential target for the treatment of advanced disease.

9.
Commun Med (Lond) ; 2: 118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159187

RESUMO

Background: Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) targeted therapies is an aggressive variant of prostate cancer with an unfavorable prognosis. The underlying mechanisms for early neuroendocrine differentiation are poorly defined and diagnostic and prognostic biomarkers are needed. Methods: We performed transcriptomic analysis on the enzalutamide-resistant prostate cancer cell line C4-2B MDVR and NEPC patient databases to identify neural lineage signature (NLS) genes. Correlation of NLS genes with clinicopathologic features was determined. Cell viability was determined in C4-2B MDVR and H660 cells after knocking down ARHGEF2 using siRNA. Organoid viability of patient-derived xenografts was measured after knocking down ARHGEF2. Results: We identify a 95-gene NLS representing the molecular landscape of neural precursor cell proliferation, embryonic stem cell pluripotency, and neural stem cell differentiation, which may indicate an early or intermediate stage of neuroendocrine differentiation. These NLS genes positively correlate with conventional neuroendocrine markers such as chromogranin and synaptophysin, and negatively correlate with AR and AR target genes in advanced prostate cancer. Differentially expressed NLS genes stratify small-cell NEPC from prostate adenocarcinoma, which are closely associated with clinicopathologic features such as Gleason Score and metastasis status. Higher ARGHEF2, LHX2, and EPHB2 levels among the 95 NLS genes correlate with a shortened survival time in NEPC patients. Furthermore, downregulation of ARHGEF2 gene expression suppresses cell viability and markers of neuroendocrine differentiation in enzalutamide-resistant and neuroendocrine cells. Conclusions: The 95 neural lineage gene signatures capture an early molecular shift toward neuroendocrine differentiation, which could stratify advanced prostate cancer patients to optimize clinical treatment and serve as a source of potential therapeutic targets in advanced prostate cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA