Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biochem J ; 481(4): 313-327, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305364

RESUMO

Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.


Assuntos
Proteínas de Repetições Ricas em Leucina , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Domínios Proteicos , Mutação , Peptídeos/metabolismo , Fosforilação
2.
NPJ Parkinsons Dis ; 10(1): 75, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570484

RESUMO

Mutations of the human leucine-rich repeat kinase 2 (LRRK2) have been associated with both, idiopathic and familial Parkinson's disease (PD). Most of these pathogenic mutations are located in the kinase domain (KD) or GTPase domain of LRRK2. In this study we describe a mechanism in which protein kinase activity can be modulated by reversible oxidation or reduction, involving a unique pair of adjacent cysteines, the "CC" motif. Among all human protein kinases, only LRRK2 contains this "CC" motif (C2024 and C2025) in the Activation Segment (AS) of the kinase domain. In an approach combining site-directed mutagenesis, biochemical analyses, cell-based assays, and Gaussian accelerated Molecular Dynamics (GaMD) simulations we could attribute a role for each of those cysteines. We employed reducing and oxidizing agents with potential clinical relevance to investigate effects on kinase activity and microtubule docking. We find that each cysteine gives a distinct contribution: the first cysteine, C2024, is essential for LRRK2 protein kinase activity, while the adjacent cysteine, C2025, contributes significantly to redox sensitivity. Implementing thiolates (R-S-) in GaMD simulations allowed us to analyse how each of the cysteines in the "CC" motif interacts with its surrounding residues depending on its oxidation state. From our studies we conclude that oxidizing agents can downregulate kinase activity of hyperactive LRRK2 PD mutations and may provide promising tools for therapeutic strategies.

3.
ACS Chem Biol ; 18(4): 810-821, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37043829

RESUMO

Mutations in the human leucine rich repeat protein kinase-2 (LRRK2) create risk factors for Parkinson's disease, and pathological functions of LRRK2 are often correlated with aberrant kinase activity. Past research has focused on developing selective LRRK2 kinase inhibitors. In this study, we combined enhanced sampling simulations with HDX-MS to characterize the inhibitor-induced dynamic changes and the allosteric communications within the C-terminal domains of LRRK2, LRRK2RCKW. We find that the binding of MLi-2 (a type I kinase inhibitor) stabilizes a closed kinase conformation and reduces the global dynamics of LRRK2RCKW, leading to a more compact LRRK2RCKW structure. In contrast, the binding of Rebastinib (a type II kinase inhibitor) stabilizes an open kinase conformation, which promotes a more extended LRRK2RCKW structure. By probing the distinct effects of the type I and type II inhibitors, key interdomain interactions are found to regulate the communication between the kinase domain and the GTPase domain. The intermediate states revealed in our simulations facilitate the efforts toward in silico design of allosteric modulators that control LRRK2 conformations and potentially mediate the oligomeric states of LRRK2 and its interactions with other proteins.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Inibidores de Proteínas Quinases , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Conformação Molecular , Mutação , Doença de Parkinson/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA