RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The majority of targeted therapies for non-small-cell lung cancer (NSCLC) are directed against oncogenic drivers that are more prevalent in patients with light exposure to tobacco smoke1-3. As this group represents around 20% of all patients with lung cancer, the discovery of stratified medicine options for tobacco-associated NSCLC is a high priority. Umbrella trials seek to streamline the investigation of genotype-based treatments by screening tumours for multiple genomic alterations and triaging patients to one of several genotype-matched therapeutic agents. Here we report the current outcomes of 19 drug-biomarker cohorts from the ongoing National Lung Matrix Trial, the largest umbrella trial in NSCLC. We use next-generation sequencing to match patients to appropriate targeted therapies on the basis of their tumour genotype. The Bayesian trial design enables outcome data from open cohorts that are still recruiting to be reported alongside data from closed cohorts. Of the 5,467 patients that were screened, 2,007 were molecularly eligible for entry into the trial, and 302 entered the trial to receive genotype-matched therapy-including 14 that re-registered to the trial for a sequential trial drug. Despite pre-clinical data supporting the drug-biomarker combinations, current evidence shows that a limited number of combinations demonstrate clinically relevant benefits, which remain concentrated in patients with lung cancers that are associated with minimal exposure to tobacco smoke.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Marcadores Genéticos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Terapia de Alvo Molecular , Medicina de Precisão , Fumar/genética , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/etiologia , Protocolos Clínicos , Ensaios Clínicos como Assunto , Estudos de Coortes , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/etiologia , Oncogenes/genética , Seleção de Pacientes , Fumaça/efeitos adversos , TriagemRESUMO
Genomic screening is routinely used to guide the treatment of cancer patients in many countries. However, several multi-layered factors make this effort difficult to deliver within a clinically relevant timeframe. Here we share the learnings from the CRUK-funded Stratified Medicine Programme for advanced NSCLC patients, which could be useful to better plan future studies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Reino UnidoRESUMO
Lung cancer diagnostics have progressed greatly in the previous decade. Development of molecular testing to identify an increasing number of potentially clinically actionable genetic variants, using smaller samples obtained via minimally invasive techniques, is a huge challenge. Tumour heterogeneity and cancer evolution in response to therapy means that repeat biopsies or circulating biomarkers are likely to be increasingly useful to adapt treatment as resistance develops. We highlight some of the current challenges faced in clinical practice for molecular testing of EGFR, ALK, and new biomarkers such as PDL1. Implementation of next generation sequencing platforms for molecular diagnostics in non-small-cell lung cancer is increasingly common, allowing testing of multiple genetic variants from a single sample. The use of next generation sequencing to recruit for molecularly stratified clinical trials is discussed in the context of the UK Stratified Medicine Programme and The UK National Lung Matrix Trial.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/patologia , Quinase do Linfoma Anaplásico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/análise , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Mutação , Receptores Proteína Tirosina Quinases/genética , Índice de Gravidade de DoençaRESUMO
INTRODUCTION: Gliomas are the most common primary tumour of the central nervous system (CNS), with an estimated annual incidence of 6.6 per 100 000 individuals in the USA and around 14 deaths per day from brain tumours in the UK. The genomic and biological landscape of brain tumours has been increasingly defined and, since 2016, the WHO classification of tumours of the CNS incorporates molecular data, along with morphology, to define tumour subtypes more accurately. The Tessa Jowell BRAIN MATRIX Platform (TJBM) study aims to create a transformative clinical research infrastructure that leverages UK National Health Service resources to support research that is patient centric and attractive to both academic and commercial investors. METHODS AND ANALYSIS: The TJBM study is a programme of work with the principal purpose to improve the knowledge of glioma and treatment for patients with glioma. The programme includes a platform study and subsequent interventional clinical trials (as separate protocols). The platform study described here is the backbone data-repository of disease, treatment and outcome data from clinical, imaging and pathology data being collected in patients with glioma from secondary care hospitals. The primary outcome measure of the platform is time from biopsy to integrated histological-molecular diagnosis using whole-genome sequencing and epigenomic classification. Secondary outcome measures include those that are process centred, patient centred and framework based. Target recruitment for the study is 1000 patients with interim analyses at 100 and 500 patients. ETHICS AND DISSEMINATION: The study will be performed in accordance with the recommendations guiding physicians in biomedical research involving human subjects, adopted by the 18th World Medical Association General Assembly, Helsinki, Finland and stated in the respective participating countries' laws governing human research, and Good Clinical Practice. The protocol was initially approved on 18 February 2020 by West Midlands - Edgbaston Research Ethics Committee; the current protocol (v3.0) was approved on 15 June 2022. Participants will be required to provide written informed consent. A meeting will be held after the end of the study to allow discussion of the main results among the collaborators prior to publication. The results of this study will be disseminated through national and international presentations and peer-reviewed publications. Manuscripts will be prepared by the Study Management Group and authorship will be determined by mutual agreement. TRIAL REGISTRATION NUMBER: NCT04274283, 18-Feb-2020; ISRCTN14218060, 03-Feb-2020.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Medicina Estatal , Consentimento Livre e Esclarecido , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , FinlândiaRESUMO
BACKGROUND: Dysregulated inflammation is associated with poor outcomes in COVID-19. We aimed to assess the efficacy of namilumab (a granulocyte-macrophage colony stimulating factor inhibitor) and infliximab (a tumour necrosis factor inhibitor) in hospitalised patients with COVID-19, to prioritise agents for phase 3 trials. METHODS: In this randomised, multicentre, multi-arm, multistage, parallel-group, open-label, adaptive, phase 2, proof-of-concept trial (CATALYST), we recruited patients (aged ≥16 years) admitted to hospital with COVID-19 pneumonia and C-reactive protein (CRP) concentrations of 40 mg/L or greater, at nine hospitals in the UK. Participants were randomly assigned with equal probability to usual care or usual care plus a single intravenous dose of namilumab (150 mg) or infliximab (5 mg/kg). Randomisation was stratified by care location within the hospital (ward vs intensive care unit [ICU]). Patients and investigators were not masked to treatment allocation. The primary endpoint was improvement in inflammation, measured by CRP concentration over time, analysed using Bayesian multilevel models. This trial is now complete and is registered with ISRCTN, 40580903. FINDINGS: Between June 15, 2020, and Feb 18, 2021, we screened 299 patients and 146 were enrolled and randomly assigned to usual care (n=54), namilumab (n=57), or infliximab (n=35). For the primary outcome, 45 patients in the usual care group were compared with 52 in the namilumab group, and 29 in the usual care group were compared with 28 in the infliximab group. The probabilities that the interventions were superior to usual care alone in reducing CRP concentration over time were 97% for namilumab and 15% for infliximab; the point estimates for treatment-time interactions were -0·09 (95% CI -0·19 to 0·00) for namilumab and 0·06 (-0·05 to 0·17) for infliximab. 134 adverse events occurred in 30 (55%) of 55 patients in the namilumab group compared with 145 in 29 (54%) of 54 in the usual care group. 102 adverse events occurred in 20 (69%) of 29 patients in the infliximab group compared with 112 in 17 (50%) of 34 in the usual care group. Death occurred in six (11%) patients in the namilumab group compared with ten (19%) in the usual care group, and in four (14%) in the infliximab group compared with five (15%) in the usual care group. INTERPRETATION: Namilumab, but not infliximab, showed proof-of-concept evidence for reduction in inflammation-as measured by CRP concentration-in hospitalised patients with COVID-19 pneumonia. Namilumab should be prioritised for further investigation in COVID-19. FUNDING: Medical Research Council.
Assuntos
Tratamento Farmacológico da COVID-19 , Adolescente , Anticorpos Monoclonais Humanizados , Teorema de Bayes , Humanos , Infliximab/uso terapêutico , SARS-CoV-2 , Padrão de Cuidado , Resultado do TratamentoRESUMO
INTRODUCTION: Severe SARS-CoV-2 infection is associated with a dysregulated immune response. Inflammatory monocytes and macrophages are crucial, promoting injurious, proinflammatory sequelae. Immunomodulation is, therefore, an attractive therapeutic strategy and we sought to test licensed and novel candidate drugs. METHODS AND ANALYSIS: The CATALYST trial is a multiarm, open-label, multicentre, phase II platform trial designed to identify candidate novel treatments to improve outcomes of patients hospitalised with COVID-19 compared with usual care. Treatments with evidence of biomarker improvements will be put forward for larger-scale testing by current national phase III platform trials. Hospitalised patients >16 years with a clinical picture strongly suggestive of SARS-CoV-2 pneumonia (confirmed by chest X-ray or CT scan, with or without a positive reverse transcription PCR assay) and a C reactive protein (CRP) ≥40 mg/L are eligible. The primary outcome measure is CRP, measured serially from admission to day 14, hospital discharge or death. Secondary outcomes include the WHO Clinical Progression Improvement Scale as a principal efficacy assessment. ETHICS AND DISSEMINATION: The protocol was approved by the East Midlands-Nottingham 2 Research Ethics Committee (20/EM/0115) and given urgent public health status; initial approval was received on 5 May 2020, current protocol version (V.6.0) approval on 12 October 2020. The MHRA also approved all protocol versions. The results of this trial will be disseminated through national and international presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBERS: EudraCT2020-001684-89, ISRCTN40580903.
Assuntos
COVID-19 , Adulto , Ensaios Clínicos Fase II como Assunto , Hospitalização , Humanos , Estudos Multicêntricos como Assunto , Pesquisa , SARS-CoV-2RESUMO
INTRODUCTION: Phase I of the Cancer Research UK Stratified Medicine Programme (SMP1) was designed to roll out molecular pathology testing nationwide at the point of cancer diagnosis, as well as facilitate an infrastructure where surplus cancer tissue could be used for research. It offered a non-trial setting to examine common UK cancer genetics in a real-world context. METHODS: A total of 26 sites in England, Wales and Scotland, recruited samples from 7814 patients for genetic examination between 2011 and 2013. Tumour types involved were breast, colorectal, lung, prostate, ovarian cancer and malignant melanoma. Centralised molecular testing of surplus material from resections or biopsies of primary/metastatic tissue was performed, with samples examined for 3-5 genetic alterations deemed to be of key interest in site-specific cancers by the National Cancer Research Institute Clinical Study groups. RESULTS: 10 754 patients (98% of those approached) consented to participate, from which 7814 tumour samples were genetically analysed. In total, 53% had at least one genetic aberration detected. From 1885 patients with lung cancer, KRAS mutation was noted to be highly prevalent in adenocarcinoma (37%). In breast cancer (1873 patients), there was a striking contrast in TP53 mutation incidence between patients with ductal cancer (27.3%) and lobular cancer (3.4%). Vast inter-tumour heterogeneity of colorectal cancer (1550 patients) was observed, including myriad double and triple combinations of genetic aberrations. Significant losses of important clinical information included smoking status in lung cancer and loss of distinction between low-grade and high-grade serous ovarian cancers. CONCLUSION: Nationwide molecular pathology testing in a non-trial setting is feasible. The experience with SMP1 has been used to inform ongoing CRUK flagship programmes such as the CRUK National Lung MATRIX trial and TRACERx.