Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
J Gen Virol ; 104(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390009

RESUMO

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation.We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilized virus-like particles (VLPs) in Pichia pastoris.The stabilized VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilization, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralize virus in vitro. Therefore, anti-EVA71 neutralizing antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.


Assuntos
Infecções por Enterovirus , Enterovirus , Poliovirus , Vacinas , Criança , Humanos , Pré-Escolar , Antígenos Virais/genética , Poliovirus/genética , Anticorpos Antivirais
2.
J Gen Virol ; 103(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35997623

RESUMO

Enterovirus A71 (EVA71) infection can result in paralysis and may be fatal. In common with other picornaviruses, empty capsids are produced alongside infectious virions during the viral lifecycle. These empty capsids are antigenically indistinguishable from infectious virus, but at moderate temperatures they are converted to an expanded conformation. In the closely related poliovirus, native and expanded antigenic forms of particle have different long-term protective efficacies when used as vaccines. The native form provides long-lived protective immunity, while expanded capsids fail to generate immunological protection. Whether this is true for EVA71 remains to be determined. Here, we selected an antigenically stable EVA71 virus population using successive rounds of heating and passage and characterized the antigenic conversion of both virions and empty capsids. The mutations identified within the heated passaged virus were dispersed across the capsid, including at key sites associated with particle expansion. The data presented here indicate that the mutant sequence may be a useful resource to address the importance of antigenic conformation in EVA71 vaccines.


Assuntos
Infecções por Enterovirus , Enterovirus , Antígenos Virais/genética , Capsídeo , Proteínas do Capsídeo/genética , Humanos
3.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778240

RESUMO

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation. We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilised virus-like particles (VLPs) in Pichia pastoris . The stabilised VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilisation, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralise virus in vitro . Therefore, the anti-EVA71 neutralising antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.

4.
Int J Biol Macromol ; 241: 124519, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085072

RESUMO

Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.


Assuntos
Venenos de Crotalídeos , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Brasil , Proteínas , Antivirais/farmacologia , Antígenos Virais , Serpentes , Fosfolipases A2
5.
mSphere ; 7(3): e0008822, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35642505

RESUMO

Enterovirus A71 (EVA71) is a medically important virus that is commonly associated with hand, foot, and mouth disease (HFMD). It is responsible for periodic outbreaks, resulting in significant economic impact and loss of life. Vaccination offers the potential to control future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are few tools to characterize the different antigenic forms of the virus. As with other picornaviruses, EVA71 virions exist in two antigenic states, native (NAg) and expanded (HAg). It is likely that the composition of vaccines, in terms of the proportions of NAg and HAg, will be important for vaccine efficacy and batch-to-batch consistency. This paper describes the development of a single-chain fused variable (scFv) domain fragment and the optimization of a sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of the NAg conformation of EVA71. NAg specificity of the scFv was demonstrated using purified EVA71, and conversion of NAg to HAg by heating resulted in a loss of binding. We have thus developed an effective tool for characterization of the specific antigenic state of EVA71. IMPORTANCE EVA71 is a medically important virus that is commonly associated with HFMD, resulting in periodic outbreaks, significant economic impact, and loss of life. Vaccination offers the potential to curtail future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are very limited effective tools to characterize the different antigenic forms of EV71. As with other picornaviruses, EVA71 virions exist in two antigenic states, native and expanded. This paper describes the development of an scFv and the optimization of a sandwich ELISA for the specific detection of the native conformation of EVA71 as an effective tool for characterization of the specific antigenic state of EVA71.


Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Ensaio de Imunoadsorção Enzimática , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA