Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nat Mater ; 22(11): 1394-1400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749314

RESUMO

Our lives cannot be imagined without polymer networks, which range widely, from synthetic rubber to biological tissues. Their properties-elasticity, strain-stiffening and stretchability-are controlled by a convolution of chemical composition, strand conformation and network topology. Yet, since the discovery of rubber vulcanization by Charles Goodyear in 1839, the internal organization of networks has remained a sealed 'black box'. While many studies show how network properties respond to topology variation, no method currently exists that would allow the decoding of the network structure from its properties. We address this problem by analysing networks' nonlinear responses to deformation to quantify their crosslink density, strand flexibility and fraction of stress-supporting strands. The decoded structural information enables the quality control of network synthesis, comparison of targeted to actual architecture and network classification according to the effectiveness of stress distribution. The developed forensic approach is a vital step in future implementation of artificial intelligence principles for soft matter design.

2.
J Am Chem Soc ; 145(50): 27450-27458, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079611

RESUMO

Upcycling plastic waste into reprocessable materials with performance-advantaged properties would contribute to the development of a circular plastics economy. Here, we modify branched polyolefins and postconsumer polyethylene through a versatile C-H functionalization approach using thiosulfonates as a privileged radical group transfer functionality. Cross-linking the functionalized polyolefins with polytopic amines provided dynamically cross-linked polyolefin networks enabled by associative bond exchange of diketoenamine functionality. A combination of resonant soft X-ray scattering and grazing incidence X-ray scattering revealed hierarchical phase morphology in which diketoenamine-rich microdomains phase-separate within amorphous regions between polyolefin crystallites. The combination of dynamic covalent cross-links and microphase separation results in useful and improved mechanical properties, including a ∼4.5-fold increase in toughness, a reduction in creep deformation at temperatures relevant to use, and high-temperature structural stability compared to the parent polyolefin. The dynamic nature of diketoenamine cross-links provides stress relaxation at elevated temperatures, which enabled iterative reprocessing of the dynamic covalent polymer network with little cycle-to-cycle property fade. The ability to convert polyolefin waste into a reprocessable thermoformable material with attractive thermomechanical properties provides additional optionality for upcycling to enable future circularity.

3.
Nature ; 549(7673): 497-501, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28869962

RESUMO

Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters-network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.


Assuntos
Materiais Biomiméticos/química , Biomimética/métodos , Elastômeros/química , Teste de Materiais , Estresse Mecânico , Animais , Artérias , Dimetilpolisiloxanos/química , Pulmão , Cifozoários , Resistência à Tração , Engenharia Tecidual/métodos
4.
Angew Chem Int Ed Engl ; 62(8): e202217941, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36583627

RESUMO

The inability to re-process thermosets hinders their utility and sustainability. An ideal material should combine closed-loop recycling and upcycling capabilities. This trait is realized in polydimethylsiloxane bottlebrush networks using thermoreversible Diels-Alder cycloadditions to enable both reversible disassembly into a polymer melt and on-demand reconfiguration to an elastomer of either lower or higher stiffness. The crosslink density was tuned by loading the functionalized networks with a controlled fraction of dormant crosslinkers and crosslinker scavengers, such as furan-capped bis-maleimide and anthracene, respectively. The resulting modulus variations precisely followed the stoichiometry of activated furan and maleimide moieties, demonstrating the lack of side reactions during reprocessing. The presented circularity concept is independent from the backbone or side chain chemistry, making it potentially applicable to a wide range of brush-like polymers.

5.
Soft Matter ; 18(46): 8714-8732, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36373559

RESUMO

We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.

6.
Angew Chem Int Ed Engl ; 59(18): 7203-7208, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32061176

RESUMO

An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side-chain polymers to be grafted from the pendant RAFT agent by a radical-mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one-pot tandem without intermediate purification.

7.
Biomacromolecules ; 20(1): 27-54, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30296828

RESUMO

Molecular bottlebrushes are building blocks for the design of unique polymeric materials whose physical properties are fundamentally governed by their densely grafted structures. Recent developments in the area of reversible deactivation radical polymerization enabled facile and effective control over multiple molecular parameters. Owing to large molecular size, anisotropic conformation, and reduced chain entanglement, molecular bottlebrushes have empowered various applications that are challenging to achieve with linear polymers. In this Review, we focus on determining correlations between brushlike architectures and materials properties.


Assuntos
Técnicas de Química Sintética/métodos , Nanoestruturas/química , Elastômeros/síntese química , Nanoestruturas/ultraestrutura , Polimerização , Tensoativos/síntese química
8.
Nat Mater ; 15(2): 183-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26618886

RESUMO

Polymer gels are the only viable class of synthetic materials with a Young's modulus below 100 kPa conforming to biological applications, yet those gel properties require a solvent fraction. The presence of a solvent can lead to phase separation, evaporation and leakage on deformation, diminishing gel elasticity and eliciting inflammatory responses in any surrounding tissues. Here, we report solvent-free, supersoft and superelastic polymer melts and networks prepared from bottlebrush macromolecules. The brush-like architecture expands the diameter of the polymer chains, diluting their entanglements without markedly increasing stiffness. This adjustable interplay between chain diameter and stiffness makes it possible to tailor the network's elastic modulus and extensibility without the complications associated with a swollen gel. The bottlebrush melts and elastomers exhibit an unprecedented combination of low modulus (∼100 Pa), high strain at break (∼1,000%), and extraordinary elasticity, properties that are on par with those of designer gels.

9.
Top Curr Chem ; 369: 1-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25805145

RESUMO

Mechanical activation of chemical bonds is usually achieved by applying external forces. However, nearly all molecules exhibit inherent strain of their chemical bonds and angles as a result of constraints imposed by covalent bonding and interactions with the surrounding environment. Particularly strong deformation of bonds and angles is observed in hyperbranched macromolecules caused by steric repulsion of densely grafted polymer branches. In addition to the tension amplification, macromolecular architecture allows for accurate control of strain distribution, which enables focusing of the internal mechanical tension to specific chemical bonds and angles. As such, chemically identical bonds in self-strained macromolecules become physically distinct because the difference in bond tension leads to the corresponding difference in the electronic structure and chemical reactivity of individual bonds within the same macromolecule. In this review, we outline different approaches to the design of strained macromolecules along with physical principles of tension management, including generation, amplification, and focusing of mechanical tension at specific chemical bonds.

10.
Langmuir ; 31(19): 5489-94, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25923598

RESUMO

An azide-functionalized shape memory elastomer, poly(octylene diazoadipate-co-octylene adipate), has been grafted with poly(oligoethylene glycol) methacrylate (poly(OEGMA)) brushes via aqueous ARGET (activators regenerated by electron transfer) ATRP. Sequential swelling of the substrate followed by a grafting-from reaction yielded an incompressible brush layer on the shape-memory substrate. Upon heating the substrate above the Tm to return to the primary shape, uniaxial wrinkles perpendicular to the direction of strain with sizes of 27-33 µm appear in addition to micrometer-sized features formed on the temporary shape after grafting. Swelling equilibration time (t1) and grafting reaction time (t2) were varied to control wrinkle formation and size. In this manner, we were able to create unique, anisotropic hierarchical surface structures with different length scales and patterns.

11.
Proc Natl Acad Sci U S A ; 109(24): 9276-80, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645366

RESUMO

Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C ─ C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (k(B)T) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V(0)(1 - e(-ßx))(2) - fx, we determined the depth and width of the potential to be V(0) = 141 ± 19 kJ/mol and ß(-1) = 0.18 ± 0.03 Å, respectively. Whereas the V(0) value is in reasonable agreement with the activation energy E(a) = 80-220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C ─ C bond D(e) = 350 kJ/mol. Moreover, the force constant K(x) = 2ß(2)V(0) = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C ─ C bond K(l) = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains.

12.
J Am Chem Soc ; 136(36): 12762-70, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25133316

RESUMO

Unique star-like polymeric architectures composed of bottlebrush arms and a molecular spoked wheel (MSW) core were prepared by atom transfer radical polymerization (ATRP). A hexahydroxy-functionalized MSW (MSW(6-OH)) was synthesized and converted into a six-fold ATRP initiator (MSW(6-Br)). Linear chain arms were grafted from MSW(6-Br) and subsequently functionalized with ATRP moieties to form six-arm macroinitiators. Grafting of side chains from the macroinitiators yielded four different star-shaped bottlebrushes with varying lengths of arms and side chains, i.e., (450-g-20)6, (450-g-40)6, (300-g-60)6, and (300-g-150)6. Gel permeation chromatography analysis and molecular imaging by atomic force microscopy confirmed the formation of well-defined macromolecules with narrow molecular weight distributions. Upon adsorption to an aqueous substrate, the bottlebrush arms underwent prompt dissociation from the MSW core, followed by scission of covalent bonds in the bottlebrush backbones. The preferential cleavage of the arms is attributed to strong steric repulsion between bottlebrushes at the MSW branching center. Star-shaped macroinitiators may undergo aggregation which can be prevented by sonication.

13.
Nat Mater ; 12(8): 735-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708330

RESUMO

The difficulty of mixing chemically incompatible substances--in particular macromolecules and colloidal particles--is a canonical problem limiting advances in fields ranging from health care to materials engineering. Although the self-assembly of chemically different moieties has been demonstrated in coordination complexes, supramolecular structures, and colloidal lattices among other systems, the mechanisms of mixing largely rely on specific interfacing of chemically, physically or geometrically complementary objects. Here, by taking advantage of the steric repulsion between brush-like polymers tethered to surface-active species, we obtained long-range arrays of perfectly mixed macromolecules with a variety of polymer architectures and a wide range of chemistries without the need of encoding specific complementarity. The net repulsion arises from the significant increase in the conformational entropy of the brush-like polymers with increasing distance between adjacent macromolecules at fluid interfaces. This entropic-templating assembly strategy enables long-range patterning of thin films on sub-100 nm length scales.

14.
Macromol Rapid Commun ; 35(2): 133-140, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150838

RESUMO

Quality of gradient copolymers is evaluated by atomic force microscopy (AFM) and correlated with molecular weight distribution (MWD) values. ARGET ATRP is employed with decreasing levels of catalyst concentrations to generate copolymers with increasing M¯w/M¯n values. The copolymers are transformed into molecular bottlebrushes to enable imaging and analysis of individual molecules by AFM. The average height (cross-sectional) profile of all bottlebrushes agrees with the instantaneous composition (ICHEMA-TMS ) of the analogous copolymer backbone, as determined by (1) H NMR. The copolymer synthesized with 500 ppm of catalyst exhibits more narrow distributions of both brush height and backbone length when analyzed as a bottlebrush by AFM. Correspondingly, the copolymers synthesized with lower catalyst concentrations yield bottlebrushes with broader height and length distribution. These results establish MWD values as an excellent trait to assess quality within gradient copolymers.


Assuntos
Polímeros/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Peso Molecular
15.
Polymers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276704

RESUMO

Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation. This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide (PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of monolayer-like BB backbones.

16.
J Am Chem Soc ; 135(31): 11421-4, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23465051

RESUMO

We here report the synthesis and characterization of a complex polymeric architecture based on a block copolymer with a cylindrical brush block and a single-chain polymeric nanoparticle block folded due to strong intramolecular hydrogen-bonds. The self-assembly of these constructs on mica surfaces was studied with atomic force microscopy, corroborating the distinct presence of block copolymer architectures.

17.
J Am Chem Soc ; 135(1): 501-10, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23181518

RESUMO

We herein report the synthesis and characterization of ABA triblock copolymers that contain two complementary association motifs and fold into single-chain polymeric nanoparticles (SCPNs) via orthogonal self-assembly. The copolymers were prepared using atom-transfer radical polymerization (ATRP) and possess different pendant functional groups in the A and B blocks (alcohols in the A block and acetylenes in the B block). After postfunctionalization, the A block contains o-nitrobenzyl-protected 2-ureidopyrimidinone (UPy) moieties and the B block benzene-1,3,5-tricarboxamide (BTA) moieties. While the protected UPy groups dimerize after photoinduced deprotection of the o-nitrobenzyl group, the BTA moieties self-assemble into helical aggregates when temperature is reduced. In a two-step thermal/photoirradiation treatment under dilute conditions, the ABA block copolymer forms both BTA-based helical aggregates and UPy dimers intramolecularly. The sequential association of the two self-assembling motifs results in single-chain folding of the polymer, affording nanometer-sized particles with a compartmentalized interior. Variable-temperature NMR studies showed that the BTA and UPy self-assembly steps take place orthogonally (i.e., without mutual interference) in dilute solution. In addition, monitoring of the intramolecular self-assembly of BTA moieties into helical aggregates by circular dichroism spectroscopy showed that the stability of the aggregates is almost independent of UPy dimerization. Size-exclusion chromatography (SEC) and small-angle X-ray scattering analysis provided evidence of significant reductions in the hydrodynamic volume and radius of gyration, respectively, after photoinduced deprotection of the UPy groups; a 30-60% reduction in the size of the polymer chains was observed using SEC in CHCl(3). Molecular imaging by atomic force microscopy (AFM) corroborated significant contraction of individual polymer chains due to intramolecular association of the BTA and UPy groups. The stepwise folding process resulting from orthogonal self-assembly-induced supramolecular interactions yields compartmentalized SCPNs comprised of distinct microdomains that mimick two secondary-structuring elements in proteins.


Assuntos
Polímeros/síntese química , Benzamidas/química , Modelos Moleculares , Estrutura Molecular , Polimerização , Polímeros/química , Pirimidinonas/química
18.
Langmuir ; 29(40): 12352-7, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24066971

RESUMO

We introduce a facile approach for the production of gas-filled microcapsules designed to withstand high pressures. We exploit microfluidics to fabricate water-filled microcapsules that are then externally triggered to become gas-filled, thus making them more echogenic. In addition, the gas-filled microcapsules have a solid polymer shell making them resistant to pressure-induced buckling, which makes them more mechanically robust than traditional prestabilized microbubbles; this should increase the potential of their utility for acoustic imaging of porous media with high hydrostatic pressures such as oil reservoirs.


Assuntos
Acústica , Cápsulas , Microfluídica/métodos
19.
ACS Macro Lett ; 12(11): 1510-1516, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37888787

RESUMO

The ability to synthesize elastomeric materials with programmable mechanical properties is vital for advanced soft matter applications. Due to the inherent complexity of hierarchical structure-property correlations in brush-like polymer networks, the application of conventional theory-based, so-called Human Intelligence (HI) approaches becomes increasingly difficult. Herein we developed a design strategy based on synergistic combination of HI and AI tools which allows precise encoding of mechanical properties with three architectural parameters: degrees of polymerization (DP) of network strands, nx, side chains, nsc, backbone spacers between side chains, ng. Implementing a multilayer feedforward artificial neural network (ANN), we took advantage of model-predicted structure-property cross-correlations between coarse-grained system code including chemistry specific characteristics S = [l, v, b] defined by monomer projection length l and excluded volume v, Kuhn length b of bare backbone and side chains, and architecture A = [nsc, ng, nx] of polymer networks and their equilibrium mechanical properties P = [G, ß] including the structural shear modulus G and firmness parameter ß. The ANN was trained by minimizing the mean-square error with Bayesian regularization to avoid overfitting using a data set of experimental stress-deformation curves of networks with brush-like strands of poly(n-butyl acrylate), poly(isobutylene), and poly(dimethylsiloxane) having structural modulus G < 50 kPa and 0.01 ≤ ß ≤ 0.3. The trained ANN predicts network mechanical properties with 95% confidence. The developed ANN was implemented for synthesis of model networks with identical mechanical properties but different chemistries of network strands.

20.
Polymers (Basel) ; 15(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38231994

RESUMO

We present a novel type of magnetorheological material that allows one to restructure the magnetic particles inside the finished composite, tuning in situ the viscoelasticity and magnetic response of the material in a wide range using temperature and an applied magnetic field. The polymer medium is an A-g-B bottlebrush graft copolymer with side chains of two types: polydimethylsiloxane and polystyrene. At room temperature, the brush-like architecture provides the tissue mimetic softness and strain stiffening of the elastomeric matrix, which is formed through the aggregation of polystyrene side chains into aggregates that play the role of physical cross-links. The aggregates partially dissociate and the matrix softens at elevated temperatures, allowing for the effective rearrangement of magnetic particles by applying a magnetic field in the desired direction. Magnetoactive thermoplastic elastomers (MATEs) based on A-g-B bottlebrush graft copolymers with different amounts of aggregating side chains filled with different amounts of carbonyl iron microparticles were prepared. The in situ restructuring of magnetic particles in MATEs was shown to significantly alter their viscoelasticity and magnetic response. In particular, the induced anisotropy led to an order-of-magnitude enhancement of the magnetorheological properties of the composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA