Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38221903

RESUMO

The advent of single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and complexity in biological tissues. However, the nature of large, sparse scRNA-seq datasets and privacy regulations present challenges for efficient cell identification. Federated learning provides a solution, allowing efficient and private data use. Here, we introduce scFed, a unified federated learning framework that allows for benchmarking of four classification algorithms without violating data privacy, including single-cell-specific and general-purpose classifiers. We evaluated scFed using eight publicly available scRNA-seq datasets with diverse sizes, species and technologies, assessing its performance via intra-dataset and inter-dataset experimental setups. We find that scFed performs well on a variety of datasets with competitive accuracy to centralized models. Though Transformer-based model excels in centralized training, its performance slightly lags behind single-cell-specific model within the scFed framework, coupled with a notable time complexity concern. Our study not only helps select suitable cell identification methods but also highlights federated learning's potential for privacy-preserving, collaborative biomedical research.


Assuntos
Pesquisa Biomédica , Análise da Expressão Gênica de Célula Única , Aprendizagem , Algoritmos , Benchmarking , Análise de Sequência de RNA
2.
Inf Syst Front ; 23(6): 1403-1415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149305

RESUMO

Existing deep learning technologies generally learn the features of chest X-ray data generated by Generative Adversarial Networks (GAN) to diagnose COVID-19 pneumonia. However, the above methods have a critical challenge: data privacy. GAN will leak the semantic information of the training data which can be used to reconstruct the training samples by attackers, thereby this method will leak the privacy of the patient. Furthermore, for this reason, that is the limitation of the training data sample, different hospitals jointly train the model through data sharing, which will also cause privacy leakage. To solve this problem, we adopt the Federated Learning (FL) framework, a new technique being used to protect data privacy. Under the FL framework and Differentially Private thinking, we propose a Federated Differentially Private Generative Adversarial Network (FedDPGAN) to detect COVID-19 pneumonia for sustainable smart cities. Specifically, we use DP-GAN to privately generate diverse patient data in which differential privacy technology is introduced to make sure the privacy protection of the semantic information of the training dataset. Furthermore, we leverage FL to allow hospitals to collaboratively train COVID-19 models without sharing the original data. Under Independent and Identically Distributed (IID) and non-IID settings, the evaluation of the proposed model is on three types of chest X-ray (CXR)images dataset (COVID-19, normal, and normal pneumonia). A large number of truthful reports make the verification of our model can effectively diagnose COVID-19 without compromising privacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA