RESUMO
China, especially the densely populated North China region, experienced severe haze events in the past decade that concerned the public. Although the most extreme cases have been largely eliminated through recent mitigation measures, severe outdoor air pollution persists and its environmental impact needs to be understood. Severe indoor pollution draws less public attention due to the short visible distance indoors, but its public health impacts cannot be ignored. Herein, we assess the trends and impacts of severe outdoor and indoor air pollution in North China from 2014 to 2021. Our results demonstrate the uneven contribution of severe hazy days to ambient and exposure concentrations of particulate matter with an aerodynamic diameter <2.5 (PM2.5). Although severe indoor pollution contributes to indoor PM2.5 concentrations (23%) to a similar extent as severe haze contributes to ambient PM2.5 concentrations (21%), the former's contribution to premature deaths was significantly higher. Furthermore, residential emissions contributed more in the higher PM2.5 concentration range both indoors and outdoors. Notably, severe haze had greater health impacts on urban residents, while severe indoor pollution was more impactful in rural areas. Our findings suggest that, besides reducing severe haze, mitigating severe indoor pollution is an important aspect of combating air pollution, especially toward improving public health.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado , China , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar , HumanosRESUMO
Residential solid fuel combustion significantly impacts air quality and human health. Pelletized biomass fuels are promoted as a cleaner alternative, particularly for those who cannot afford the high costs of gas/electricity, but their emission characteristics and potential effects remain poorly understood. The present laboratory-based study evaluated pollution emissions from pelletized biomass burning, including CH4 (methane), NMHC (nonmethane hydrocarbon compounds), CO, SO2, NOx, PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm), OC (organic carbon), EC (element carbon), PAHs (polycyclic aromatic hydrocarbons), EPFRs (environmentally persistent free radicals), and OP (oxidative potential) of PM2.5, and compared with those from raw biomass burning. For most targets, except for SO2 and NOx, the mass-based emission factors for pelletized biomass were 62-96% lower than those for raw biomass. SO2 and NOx levels were negatively correlated with other air pollutants (p < 0.05). Based on real-world daily consumption data, this study estimated that households using pelletized biomass could achieve significant reductions (51-95%) in emissions of CH4, NMHC, CO, PM2.5, OC, EC, PAHs, and EPFRs compared to those using raw biomass, while the differences in emissions of NOx and SO2 were statistically insignificant. The reduction rate of benzo(a)pyrene-equivalent emissions was only 16%, much lower than the reduction in the total PAH mass (78%). This is primarily attributed to the more PAHs with high toxic potentials, such as dibenz(a,h)anthracene, in the pelletized biomass emissions. Consequently, impacts on human health associated with PAHs might be overestimated if only the mass of total PAHs was counted. The OP of particles from the pellet burning was also significantly lower than that from raw biomass by 96%. The results suggested that pelletized biomass could be a transitional substitution option that can significantly improve air quality and mitigate human exposure.
Assuntos
Poluentes Atmosféricos , Biomassa , Material Particulado , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição do Ar em Ambientes Fechados , Humanos , OxirreduçãoRESUMO
Rising environmental concerns associated with the domestic use of solid biofuels have driven the search for clean energy alternatives. This study investigated the in vitro toxicological characteristics of PM2.5 emissions from residential biomass pellet burning using the A549 epithelial cell line. The potential of modern pellet applications to reduce PM2.5 emissions was evaluated by considering both mass reduction and toxicity modification. PM2.5 emissions from raw and pelletized biomass combustion reduced cell viability, indicative of acute toxicity, and also protein expression associated with epithelial barrier integrity, implying further systemic toxicity, potentially via an oxidative stress mechanism. Toxicity varied between PM2.5 emissions from raw biomass and pellets, with pelletized straw and wood inducing cytotoxicity by factors of 0.54 and 1.30, and causing epithelial barrier damage by factors of 1.76 and 2.08, respectively, compared to their raw counterparts. Factoring in both mass reduction and toxicity modifications, PM2.5 emissions from pelletized straw and wood dropped to 1.83 and 5.07 g/kg, respectively, from 30.1 to 9.32 g/kg for raw biomass combustion. This study underscores the effectiveness of pelletized biomass, particularly straw pellets, as a sustainable alternative to traditional biofuels and highlights the necessity of considering changes in toxicity when assessing the potential of clean fuels to mitigate emissions of the PM2.5 complex.
Assuntos
Biomassa , Material Particulado , Material Particulado/toxicidade , Humanos , Poluentes Atmosféricos/toxicidade , Células A549 , Sobrevivência Celular/efeitos dos fármacosRESUMO
Environmental persistent free radicals (EPFRs), as emerging contaminants in environment, can induce oxidative stress causing severe adverse health outcomes. The formation of EPFRs is thought to be associated with the transformation of aromatic compounds like polycyclic aromatic hydrocarbons (PAHs). Herein this study firstly evaluated EPFRs in industrial soils being highly polluted by PAHs, and explored its associated with PAHs, with the modification of soil organic matter content. Soil EPFRs from two industrial plants were 4.1 × 1016 and 4.5 × 1016 spins/g, respectively, that were significantly higher than the levels in the surrounding areas. Carbon-centered EPFRs account for approximately 80% inside the plant, but outside the plants, nearly 50-70% of EPFRs were carbon-centered with adjacent heteroatoms. As one important precursor of EPFRs, PAHs exhibited a significantly positive correlation with EPFRs in industrial soils (p < 0.05), explaining 40%-60% of the variation in EPFRs concentration in the present study. The relationship between soil organic matter and EPFRs concentration normalized by PAHs forms an inverted V-shape, suggesting an inhibition effect of soil organic matter on the EPFR formation potentials from PAHs, that is worthy to be further examed in future laboratory and field experiments.
RESUMO
Some Polycyclic Aromatic Compounds (PACs) such as nitrated-PAHs (NPAHs), oxygenated-PAHs (OPAHs) and methyl-PAHs (MPAHs) have attracted significant concern due to derivatives have greater potential to be more toxic at low environmental concentrations compared to their PPAHs, particularly in petrochemical industrial region and its surrounding areas surface soils in China. Hence, this article provides an insight into the fate, sources, impacts, and relevance to the external environment of PAH-derivatives based on important emissions source. Moreover, prospective health risk due to their exposure has also been discussed. In this study, the concentration (10-3 ng/g) of Æ©18PPAHs, Æ©11MPAHs, Æ©12NPAHs, and Æ©4OPAHs in the park were 9.67 ± 1.40, 3.24 ± 0.54, 0.03 ± 0.02 and 0.19 ± 0.65, respectively, which were 4.47, 3.89, 2.04 and 1.17 times than of them surrounding the region. A decreasing trend of the low molecular weight (2-4Rings) contribution to the total amount of PAHs, while the fraction of high molecular weight (5-6Rings) species showed the opposite trend. According to the principal component analysis (PCA) and diagnostic ratios indicated PAHs in the soil samples have mixed sources from industrial activities, solid fuel combustion, and heavy traffic. Despite the high concentrations of MPAHs and OPAHs, the toxicity equivalency quotients (TEQs) of them were not calculated due to the lack of toxic equivalent factors (TEF), thus current studies on PAH and derivatives could have underestimated their exposure risks. The quality and sustainable management of soils are crucial for human health and sustainable development, while there is lack of public awareness of the severe issue of soil pollution. It is recommended to conduct more intensive monitoring and regional assessments in the future.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes do Solo , Humanos , Compostos Policíclicos/análise , Monitoramento Ambiental , Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de RiscoRESUMO
Organophosphite antioxidants (OPAs) have been seriously neglected as potential sources of organophosphate esters (OPEs) in environments. This study utilizes a modeling approach to quantify for the first time national emissions and multimedia distributions of triphenyl phosphate (TPHP)âa well-known flame retardantâand three novel OPEs: tris(2,4-ditert-butylphenyl) phosphate (AO168âO), bis(2,4-ditert-butylphenyl) pentaerythritol diphosphate (AO626âO2), and trisnonylphenol phosphate (TNPP). Emphasis is on the quantitative assessment of OPA source in China. TPHP has 1.1-9.7 times higher emission (300 Mg/year in 2019 with half from OPA sources) than AO168âO (278 Mg/year), AO626âO2 (53 Mg/year), and TNPP (32 Mg/year), but AO168âO is predominant in environments (63-79%) except freshwaters. About 72-99% of the studied OPEs are emitted via air, with 88-99% ultimately distributed into soils as the major sink. OPA-source emissions contribute 9.5-57% and 4.7-56% of TPHP masses and concentrations (except in sediments) in different media, respectively. Both AO168âO and AO626âO2 exhibit high overall persistence ranging between 2 and 11 years. Source emissions and environmental concentrations are elevated in economically developed areas, while persistence is higher in northern areas, where precipitation and temperature are lower. This study shows the significance of the sources of OPA to OPE contamination, which supports chemical management of these substances.
Assuntos
Antioxidantes , Retardadores de Chama , Organofosfatos , Fosfatos , China , Retardadores de Chama/análise , Ésteres , Monitoramento AmbientalRESUMO
Fuel combustion provides basic energy for the society but also produces CO2 and incomplete combustion products that threaten human survival, climate change, and global sustainability. A variety of fuels burned in different facilities expectedly have distinct impacts on climate, which remains to be quantitatively assessed. This study uses updated emission inventories and an earth system model to evaluate absolute and relative contributions in combustion emission-associated climate forcing by fuels, sectors, and regions. We showed that, from 1970 to 2014, coal burned in the energy sector and oil used in the transportation sector contributed comparable energies consumed (24 and 20% of the total) but had distinct climate forcing (1 and 40%, respectively). Globally, coal burned for energy production had negative impacts on climate forcing but positive effects in the residential sector. In many developing countries, coal combustion in the energy sector had negative radiative forcing (RF) per unit energy consumed due to insufficient controls on sulfur and scattering aerosol levels, but oils in the transportation sector had high positive RF values. These results had important implications on the energy transition and emission reduction actions in response to climate change. Distinct climate efficiencies of energies and the spatial heterogeneity implied differentiated energy utilization strategies and pollution control policies by region and sector.
Assuntos
Poluição do Ar , Carvão Mineral , Humanos , Carvão Mineral/análise , Fenômenos FísicosRESUMO
Access to safe drinking water is a major public concern in China. A national survey of 57â¯029 households was conducted to fill major knowledge gaps on drinking water sources, end-of-use treatment methods, and energy used to boil water. Herein, we show that surface water and well water were frequently used by >147 million rural residents living in low-income inland and mountainous areas. Driven by socioeconomic development and government intervention, the level of access to tap water in rural China increased to 70% by 2017. Nevertheless, the rate was considerably lower than that in cities and unevenly distributed across the country. Approximately 90% of drinking water was boiled, an increase from 85% a decade ago. The contribution of electricity, mainly electric kettles, to the boiling of water was 69%. Similar to cooking, living conditions and heating requirements are the main influencing indicators of energy used to boil water. In addition to socioeconomic development, government intervention is a key factor driving the transition to safe water sources, universal access to tap water, and clean energy. Further improvement in drinking water safety in poor and remote rural areas remains challenging, and more intervention and more investment are needed.
Assuntos
Água Potável , Abastecimento de Água , Humanos , China , Cidades , Características da Família , População RuralRESUMO
Levoglucosan (LG) is a pyrolysis product of cellulose and hemicellulose at low combustion temperatures. However, LG release cannot be determined only by considering the contents of cellulose and hemicellulose exclusively due to the complexity of combustion processes and the physical-chemical properties of the fuel. This study detected the emission factors (EFs) of LG from 22 different solid fuel samples (including coal and biomass) by considering 18 different fuel properties and five combustion parameters. The average LGEFs during solid fuel burning varied in a range of 0.03-136 mg kg-1, with a magnitude difference of 1-4 orders. While the variations in cellulose (59.5-368 mg g-1) and hemicellulose (73.5-165 mg g-1) contents of fuel samples were only one- to 6-fold. A short combustion duration (<150 min) and a medium combustion temperature (200-400 °C) influenced by volatile and ash contents are crucial for the generation and accumulation of LG. A random forest coupled with the Akaike information criterion stepwise regression model successfully explained 96% of the total LG emission variation using three variables (ash content, cellulose content, and modified combustion efficiency). The ash content promoted coke formation and LG chain cracking by increasing the pyrolysis temperature and is considered the most important factor. The alkali metal in ash can reduce the energy barrier of intramolecular ring contraction reactions and inhibit the dehydration reactions, which led to additional heat being utilized by the competitive pathways of LG formation. This study provided a method to address the parametrization and release mechanisms of combustion source emissions.
Assuntos
Poluentes Atmosféricos , Carvão Mineral , Carvão Mineral/análise , Glucose , Temperatura , Celulose , Poluentes Atmosféricos/análiseRESUMO
Household air pollution associated with solid fuel use is a long-standing public concern. The global population mainly using solid fuels for cooking remains large. Besides cooking, large amounts of coal and biomass fuels are burned for space heating during cold seasons in many regions. In this study, a wintertime multiple-region field campaign was carried out in north China to evaluate indoor PM2.5 variations. With hourly resolved data from â¼1600 households, key influencing factors of indoor PM2.5 were identified from a machine learning approach, and a random forest regression (RFR) model was further developed to quantitatively assess the impacts of household energy transition on indoor PM2.5. The indoor PM2.5 concentration averaged at 120 µg/m3 but ranged from 16 to â¼400 µg/m3. Indoor PM2.5 was â¼60% lower in families using clean heating approaches compared to those burning traditional coal or biomass fuels. The RFR model had a good performance (R2 = 0.85), and the interpretation was consistent with the field observation. A transition to clean coals or biomass pellets can reduce indoor PM2.5 by 20%, and further switching to clean modern energies would reduce it an additional 30%, suggesting many significant benefits in promoting clean transitions in household heating activities.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , China , População Rural , Culinária , Carvão MineralRESUMO
Indoor PM2.5, particulate matter no more than 2.5 µm in aerodynamic equivalent diameter, has very high spatiotemporal variabilities; and exploring the key factors influencing the variabilities is critical for purifying air and protecting human health. Here, we conducted a longer-term field monitoring campaign using low-cost sensors and evaluated inter- and intra-household PM2.5 variations in rural areas where energy or stove stacking is common. Household PM2.5 varied largely across different homes but also within households. Using generalized linear models and dominance analysis, we estimated that outdoor PM2.5 explained 19% of the intrahousehold variation in indoor daily PM2.5, whereas factors like the outdoor temperature and indoor-outdoor temperature difference that was associated with energy use directly or indirectly, explained 26% of the temporal variation. Inter-household variation was lower than intrahousehold variation. The inter-household variation was strongly associated with distinct internal sources, with energy-use-associated factors explaining 35% of the variation. The statistical source apportionment model estimated that solid fuel burning for heating contributed an average of 31%-55% of PM2.5 annually, whereas the contribution of sources originating from the outdoors was ≤10%. By replacing raw biomass or coal with biomass pellets in gasifier burners for heating, indoor PM2.5 could be significantly reduced and indoor temperature substantially increased, providing thermal comforts in addition to improved air quality.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Culinária , Poluição do Ar/análise , Material Particulado/análise , Monitoramento AmbientalRESUMO
The chemical industry is a significant source of nonmethane volatile organic compounds (NMVOCs), pivotal precursors to ambient ozone (O3), and secondary organic aerosol (SOA). Despite their importance, precise estimation of these emissions remains challenging, impeding the implementation of NMVOC controls. Here, we present the first comprehensive plant-level assessment of NMVOC emissions from the chemical industry in China, encompassing 3461 plants, 127 products, and 50 NMVOC compounds from 2010 to 2019. Our findings revealed that the chemical industry in China emitted a total of 3105 (interquartile range: 1179-8113) Gg of NMVOCs in 2019, with a few specific products accounting for the majority of the emissions. Generally, plants engaged in chemical fibers production or situated in eastern China pose a greater risk to public health due to their higher formation potentials of O3 and SOA or their proximity to residential areas or both. We demonstrated that targeting these high-risk plants for emission reduction could enhance health benefits by 7-37% per unit of emission reduction on average compared to the current situation. Consequently, this study provides essential insights for developing effective plant-specific NMVOC control strategies within China's chemical industry.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Indústria Química , Monitoramento Ambiental , Ozônio/análise , China , Aerossóis/análise , PlantasRESUMO
Residential emissions significantly contribute to air pollution. To address this issue, a clean heating campaign was implemented to replace coal with electricity or natural gas among 13.9 million rural households in northern China. Despite great success, the cost-benefits and environmental equity of this campaign have never been fully investigated. Here, we modeled the environmental and health benefits, as well as the total costs of the campaign, and analyzed the inequality and inequity. We found that even though the campaign decreased only 1.1% of the total energy consumption, PM2.5 emissions and PM2.5 exposure experienced 20% and 36% reduction, respectively, revealing the amplification effects along the causal pathway. Furthermore, the number of premature deaths attributable to residential emissions reduced by 32%, suggesting that the campaign was highly beneficial. Governments and residents shared the cost of 2,520 RMB/household. However, the benefits and the costs were unevenly distributed, as the residents in mountainous areas were not only less benefited from the campaign but also paid more because of the higher costs, resulting in a notably lower cost-effectiveness. Moreover, villages in less developed areas tended to choose natural gas with a lower initial investment but a higher total cost (2,720 RMB/household) over electricity (2,190 RMB/household). With targeted investment and subsidies in less developed areas and the promotion of electricity and other less expensive alternatives, the multidevelopment goals of improved air quality, reduced health impacts, and reduced inequity in future clean heating interventions could be achieved.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Análise Custo-Benefício , Material Particulado/análise , Calefação , Gás Natural , Poluição do Ar/análise , China , Poluentes Atmosféricos/análiseRESUMO
The iron and steel industry (ISI) is important for socio-economic progress but emits greenhouse gases and air pollutants detrimental to climate and human health. Understanding its historical emission trends and drivers is crucial for future warming and pollution interventions. Here, we offer an exhaustive analysis of global ISI emissions over the past 60 years, forecasting up to 2050. We evaluate emissions of carbon dioxide and conventional and unconventional air pollutants, including heavy metals and polychlorinated dibenzodioxins and dibenzofurans. Based on this newly established inventory, we dissect the determinants of past emission trends and future trajectories. Results show varied trends for different pollutants. Specifically, PM2.5 emissions decreased consistently during the period 1970 to 2000, attributed to adoption of advanced production technologies. Conversely, NOx and SO2 began declining recently due to stringent controls in major contributors such as China, a trend expected to persist. Currently, end-of-pipe abatement technologies are key to PM2.5 reduction, whereas process modifications are central to CO2 mitigation. Projections suggest that by 2050, developing nations (excluding China) will contribute 52-54% of global ISI PM2.5 emissions, a rise from 29% in 2019. Long-term emission curtailment will necessitate the innovation and widespread adoption of new production and abatement technologies in emerging economies worldwide.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluição do Ar/análise , Ferro , Material Particulado/análise , Aço , Poluentes Atmosféricos/análise , ChinaRESUMO
Contrast agents are widely used in ultrasound imaging. Many imaging techniques have been developed to improve the contrast between tissue and the agents, based on the nonlinear response of microbubbles. In this study, heterodyne excitation was introduced and was compared with traditional sinusoidal signal and chirp excitation for visualizing polymer-shelled microbubbles and degassed water in a tissue-mimicking phantom. Pulse inversion technique was implemented under plane wave (PW) and focused imaging mode. Image enhancement was evaluated by contrast-to-tissue ratio (CTR) at different transmitting peak negative pressures (PNPs). Experimental results showed that heterodyne excitation had a better suppression effect on tissue signals in PW imaging. The CTR reached an approximation of 17 dB at a low peak negative pressure, which was much higher compared to other excitations. In focused wave imaging, a saturation threshold of CTR was observed for the sinusoidal wave burst and chirp excitation at high PNPs. Heterodyne excitation showed considerable contrast-to-noise ratio under both imaging modes. The response of a polymer-shelled microbubble under heterodyne excitation was simulated. Simulations suggest that in future work, specific filters are required to extract the nonlinear components, such as at the two-peak frequencies around fundamental frequency, to achieve a better image enhancement effect.
Assuntos
Aumento da Imagem , Microbolhas , Frequência Cardíaca , Imagens de Fantasmas , PolímerosRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants associated with various health risks including lung cancer. Indoor exposure to PAHs, particularly from the indoor burning of fuels, is significant; however, long-term large-scale assessments of indoor PAHs are hampered by high costs and time-consuming in field sampling and laboratory experiments. A simple fuel-based approach and statistical regression models were developed as a trial to predict indoor BaP, as a typical PAH, in China, and consequently spatiotemporal variations in indoor BaP and indoor exposure contributions were discussed. The results show that the national population-weighted indoor BaP concentration has decreased substantially from 46.1 ng/m3 in 1992 to 6.60 ng/m3 in 2017, primarily due to the increased use of clean energies for cooking and heating. Indoor BaP exposure contributed to > 70% of the total inhalation exposure in most cities, particularly in regions where solid fuels are widely utilized. With limited experimental observation data in building statistical models, quantitative results of the study are associated with high uncertainties; however, the study undoubtedly supports effective countermeasures on indoor PAHs from solid fuel use and the importance of promoting clean household energy usage to improve household air quality.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar/análise , China , Monitoramento AmbientalRESUMO
Environmental persistent free radicals (EPFRs) are receiving growing concerns owing to their potentially adverse impacts on human health. Road dust is one important source of air pollution in most cities and may pose significant health risks. Characteristics of EPFRs in urban road dusts and its formation mechanism(s) are still rarely studied. Here, we evaluated occurrence and size distributions of EPFRs in road dusts from different functional areas of an urban city, and assessed relationship between EPFRs and some transition metals. Strong electron paramagnetic resonance signals of 6.01 × 1016 - 1.3 × 1019 spins/g with the mean g value of 2.0029 ± 0.0019 were observed, indicating that EPFRs consisted of a mixture of C-centered radicals, and C-centered radicals with an adjacent oxygen atom in the urban road dust. Much more EPFRs enriched in finer dust particles. EPFRs significantly correlated with the total Fe, but not water-soluble Fe, suggesting different impacts of water-soluble and insoluble metals in the formation of EFPRs. Health risk assessment results indicated high risk potentials via the ingestion and dermal exposure to EPFRs in road dusts. Future studies are calling to look into formation mechanisms of EPFRs in urban road dusts and to quantitatively evaluate its potential risks on human health.
Assuntos
Poluição do Ar , Elementos de Transição , Humanos , Poeira/análise , Radicais Livres , Cidades , Monitoramento AmbientalRESUMO
Solid fuel use (SFU) is common in most developing countries and would release many hazardous air pollutants posing high risks on human health. The Global Burden of Disease (GBD) study highlighted risks associated with household SFU in Pakistan, however, high uncertainties prevail because of scanty data on SFU and unaccounted energy stacking. This study conducted a field campaign aiming at collecting first-hand data on household energy mix in Pakistan. The first survey was in Punjab and Azad Kashmir, and revealed that stacked energy use was pervasive, especially for cooking. The stacking was found to be much more obvious in SFU households (defined as those using SFU dominantly) compared to those non-SFU. There were significantly substantial differences between Azad Kashmir and Punjab because of distinct resources available and economic conditions. Woody materials comprised up to nearly 70% in Azad Kashmir, but in Punjab, gas was frequently used for cooking. Only investigating primary household energy would probably overestimate main energy types that being used for a longer time but underestimated other supplements, suggesting the preference of multiple-energy surveys in household energy studies.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Paquistão , Características da Família , Poluentes Atmosféricos/análise , Inquéritos e Questionários , Culinária , Poluição do Ar em Ambientes Fechados/análiseRESUMO
Environmentally persistent free radicals (EPFRs) can induce reactive oxygen species, causing adverse health impacts, and residential fuel (biomass and coal) combustion is believed to be an important emission source for EPFRs; however, the residential emission characteristics of EPFRs are rarely studied in the real world. Here, we conducted a field campaign evaluating the presence and characteristics of EPFRs generated from residential biomass and coal burning in rural China. The emission factors (EFs) of EPFRs (with units of 1020 spins·kg-1) in PM2.5 from the combustion of crop residues (3.97 ± 0.47) were significantly higher than those from firewood (2.06 ± 0.19) and coal (2.13 ± 0.33) (p < 0.05). The EPFRs from residential solid fuel combustion were carbon-centered free radicals adjacent to oxygen atoms. The fuel type was a primary factor controlling EPFR discharge, explaining 68% of the variation in EPFR EFs. The emissions from biomass burning had higher EPFRs per particle than those from coal combustion. EPFRs had stronger relationships with carbonaceous components than with other incomplete combustion products. The EPFRs from biomass burning were mostly generated during the pyrolysis of fuels, while the EPFRs generated from coal combustion were mainly associated with refractory organic compounds. This study provides valuable information for evaluating the fates of EPFRs, promoting a better understanding of the health impacts of air pollution.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , China , Carvão Mineral , Radicais Livres/análise , Material Particulado/análiseRESUMO
North China is among the most polluted regions in the country, and human exposure to PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) in this region has led to severe health consequences. The region has also benefited the most from emission reductions in recent years. It is of interest to understand to what extent and through which paths emissions from different sectors cause adverse health impacts. Here, we present the results of a full evaluation of the health benefits of emission control actions implemented in recent years based on segregated emission inventories with an emphasis on residential emissions. Two major causal paths, one from residential emissions to indoor air pollution, exposure, and premature deaths, and the other from nonresidential emissions to ambient air pollution and psychophysical impacts, were identified and quantified. From 2014 to 2019, both ambient (33%) and indoor (39%) PM2.5 decreased significantly, leading to decreasing trends in exposure (36%), premature deaths (10%), and psychophysical impacts (21%). The Air Pollution Prevention and Control Action Plan, the Clean Heating Campaign, and spontaneous residential shifts to clean energy contributed significantly to these reductions when the effects of other drivers, such as population and economic growth, were excluded.