Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(38): e202305569, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345993

RESUMO

Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.

2.
Chemistry ; 27(51): 12998-13008, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288149

RESUMO

A series of dicyano-imidazole-based molecules with thermally activated delayed fluorescence (TADF) properties were synthesized to obtain pure blue-emitting organic light-emitting diodes (OLEDs). The targeted molecules used dicyano-imidazole with a short-conjugated system as the electron acceptor to strong intermolecular π-π interactions, and provide a relatively shallow energy level of the lowest unoccupied molecular orbital (LUMO). The cyano group was selected to improve imidazole as an electron acceptor due to its prominent electron-transporting characteristics. Four different electron donors, that is, 9,9-dimethyl-9,10-dihydroacridine (DMAC), 10H-spiro(acridine-9,9'-fluoren) (SPAC), and 9,9-diphenyl-9,10-dihydroacridine (DPAC), were used to alternate the highest occupied molecular orbital (HOMO) energy level to tune the emission color further. The crowded molecular structure in space makes the electron donor and acceptor almost orthogonal, reducing the energy gap (ΔEST ) between the first excited singlet (S1 ) and the triplet (T1 ) states and introducing significant TADF property. The efficiencies of the blue-emissive devices with imM-SPAC and imM-DMAC obtained in this work are the highest among the reported imidazole-based TADF-OLEDs, which are 13.8 % and 13.4 %, respectively. Both of Commission Internationale de l'Eclairage (CIE) coordinates are close to the saturated blue region at (0.17, 0.18) and (0.16, 0.19), respectively. Combining these tailor-made TADF compounds with specific device architectures, electroluminescent (EL) emission from sky-blue to deep-blue could be achieved, proving their great potential in EL applications.

3.
Chemistry ; 27(71): 17785-17793, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34747069

RESUMO

Recently, perovskites have attracted intense attention due to their high potential in optoelectronic applications. Employing perovskites as the emissive materials of light-emitting electrochemical cells (LECs) shows the advantages of simple fabrication process, low-voltage operation, and compatibility with inert electrodes, along with saturated electroluminescence (EL) emission. Unlike in previously reported perovskite LECs, in which salts are incorporated in the emissive layer, the ion-transport layer was separated from the emissive layer in this work. The layer of ionic transition metal complex (iTMC) not only provides mobile ions but also serves as an electron-injection/transport layer. Orthogonal solvents are used in spin coating to prevent the intermixing of stacked perovskite and iTMC layers. The blue iTMC with high ionization potential is effective in blocking holes from the emissive layer and thus ensures EL color saturation. In addition, the carrier balance of the perovskite/iTMC LECs can be optimized by adjusting the iTMC layer thickness. The optimized external quantum efficiency of the CsPbBr3 /iTMC LEC reaches 6.8 %, which is among the highest reported values for perovskite LECs. This work successfully demonstrates that, compared with mixing all components in a single emissive layer, separating the layer of ion transport, electron injection and transport from the perovskite emissive layer is more effective in adjusting device carrier balance. As such, solution-processable perovskite/iTMC LECs open up a new way to realize efficient perovskite LECs.

4.
Chemistry ; 27(71): 17725, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34897838

RESUMO

Invited for the cover of this issue are Chin-Wei Lu, Zu-Po Yang, Hai-Ching Su, and co-workers at National Yang Ming Chiao Tung University and Providence University. The image depicts electron transport for light-emitting electrochemical cells. Read the full text of the article at 10.1002/chem.202103739.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA