Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 183(3): 739-751.e8, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32991842

RESUMO

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide, reaching near fixation in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and on cells rendered permissive by ectopic expression of human ACE2 or of ACE2 orthologs from various mammals, including Chinese rufous horseshoe bat and Malayan pangolin. D614G did not alter S protein synthesis, processing, or incorporation into SARS-CoV-2 particles, but D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts an interprotomer contact and that the conformation is shifted toward an ACE2 binding-competent state, which is modeled to be on pathway for virion membrane fusion with target cells. Consistent with this more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated.


Assuntos
Betacoronavirus/fisiologia , Betacoronavirus/ultraestrutura , Glicoproteína da Espícula de Coronavírus/fisiologia , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Células Cultivadas , Infecções por Coronavirus/virologia , Feminino , Variação Genética , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Receptores de Coronavírus , Receptores Virais/metabolismo , SARS-CoV-2 , Especificidade da Espécie
2.
Cell ; 179(6): 1319-1329.e8, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31704029

RESUMO

mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.


Assuntos
Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Monoméricas de Ligação ao GTP/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Proteínas Proto-Oncogênicas/ultraestrutura , Proteínas Supressoras de Tumor/ultraestrutura , Arginina/metabolismo , Biocatálise , Proteínas de Transporte/química , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Hidrólise , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Supressoras de Tumor/química
3.
Cell ; 165(1): 153-164, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26972053

RESUMO

Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ~30 µM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway.


Assuntos
Arginina/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Serina-Treonina Quinases TOR/metabolismo
4.
Mol Cell ; 82(10): 1836-1849.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35338845

RESUMO

mTORC1 controls cellular metabolic processes in response to nutrient availability. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which are localized on the lysosomal surface by the Ragulator complex. The Rag GTPases receive amino acid signals from multiple upstream regulators. One negative regulator, GATOR1, is a GTPase activating protein (GAP) for RagA. GATOR1 binds to the Rag GTPases via two modes: an inhibitory mode and a GAP mode. How these two binding interactions coordinate to process amino acid signals is unknown. Here, we resolved three cryo-EM structural models of the GATOR1-Rag-Ragulator complex, with the Rag-Ragulator subcomplex occupying the inhibitory site, the GAP site, and both binding sites simultaneously. When the Rag GTPases bind to GATOR1 at the GAP site, both Rag subunits contact GATOR1 to coordinate their nucleotide loading states. These results reveal a potential GAP mechanism of GATOR1 during the mTORC1 inactivation process.


Assuntos
Proteínas Ativadoras de GTPase , Proteínas Monoméricas de Ligação ao GTP , Aminoácidos/metabolismo , Microscopia Crioeletrônica , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
5.
Annu Rev Biochem ; 82: 693-721, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23414305

RESUMO

The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.


Assuntos
Membrana Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Humanos , Mamíferos , Ligação Proteica , Transporte Proteico , Transdução de Sinais
6.
Mol Cell ; 68(3): 552-565.e8, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056322

RESUMO

mTOR complex I (mTORC1) is a central growth regulator that senses amino acids through a pathway that converges on the Rag GTPases, an obligate heterodimer of two related GTPases. Despite their central role in amino acid sensing, it is unknown why the Rag GTPases are heterodimeric and whether their subunits communicate with each other. Here, we find that the binding of guanosine triphosphate (GTP) to one subunit inhibits the binding and induces the hydrolysis of GTP by the other. This intersubunit communication pushes the Rag GTPases into either of two stable configurations, which represent active "on" or "off" states that interconvert via transient intermediates. Subunit coupling confers on the mTORC1 pathway its capacity to respond rapidly to the amino acid level. Thus, the dynamic response of mTORC1 requires intersubunit communication by the Rag GTPases, providing a rationale for why they exist as a dimer and revealing a distinct mode of control for a GTP-binding protein.


Assuntos
Aminoácidos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Sítios de Ligação , Estabilidade Enzimática , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Hidrólise , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas , Transdução de Sinais , Relação Estrutura-Atividade , Transfecção
7.
Subcell Biochem ; 104: 269-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963491

RESUMO

Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais
8.
J Biol Chem ; 299(7): 104880, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269949

RESUMO

Cells need to coordinate nutrient availability with their growth and proliferation. In eukaryotic cells, this coordination is mediated by the mechanistic target of the rapamycin complex 1 (mTORC1) pathway. mTORC1 activation is regulated by two GTPase units, the Rag GTPase heterodimer and the Rheb GTPase. The RagA-RagC heterodimer controls the subcellular localization of mTORC1, and its nucleotide loading states are strictly controlled by upstream regulators including amino acid sensors. A critical negative regulator of the Rag GTPase heterodimer is GATOR1. In the absence of amino acids, GATOR1 stimulates GTP hydrolysis by the RagA subunit to turn off mTORC1 signaling. Despite the enzymatic specificity of GATOR1 to RagA, a recent cryo-EM structural model of the human GATOR1-Rag-Ragulator complex reveals an unexpected interface between Depdc5, a subunit of GATOR1, and RagC. Currently, there is no functional characterization of this interface, nor do we know its biological relevance. Here, combining structure-function analysis, enzymatic kinetic measurements, and cell-based signaling assays, we identified a critical electrostatic interaction between Depdc5 and RagC. This interaction is mediated by the positively charged Arg-1407 residue on Depdc5 and a patch of negatively charged residues on the lateral side of RagC. Abrogating this interaction impairs the GAP activity of GATOR1 and cellular response to amino acid withdrawal. Our results reveal how GATOR1 coordinates the nucleotide loading states of the Rag GTPase heterodimer, and thus precisely controls cellular behavior in the absence of amino acids.


Assuntos
Aminoácidos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Humanos , Aminoácidos/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , Transdução de Sinais/fisiologia , Eletricidade Estática
9.
RNA ; 28(2): 123-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34848561

RESUMO

GGGGCC (G4C2) repeat expansion in the first intron of C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia. Repeat-containing RNA is translated into dipeptide repeat (DPR) proteins, some of which are neurotoxic. Using dynamic ribosome profiling, we identified three translation initiation sites in the intron upstream of (G4C2) repeats; these sites are detected irrespective of the presence or absence of the repeats. During translocation, ribosomes appear to be stalled on the repeats. An AUG in the preceding C9ORF72 exon initiates a uORF that inhibits downstream translation. Polysome isolation indicates that unspliced (G4C2) repeat-containing RNA is a substrate for DPR protein synthesis. (G4C2) repeat-containing RNA translation is 5' cap-independent but inhibited by the initiation factor DAP5, suggesting an interplay with uORF function. These results define novel translational mechanisms of expanded (G4C2) repeat-containing RNA in disease.


Assuntos
Proteína C9orf72/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/química , Ribossomos/metabolismo , Proteína C9orf72/metabolismo , Repetições de Dinucleotídeos , Células HEK293 , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Nature ; 556(7699): 64-69, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590090

RESUMO

Nutrients, such as amino acids and glucose, signal through the Rag GTPases to activate mTORC1. The GATOR1 protein complex-comprising DEPDC5, NPRL2 and NPRL3-regulates the Rag GTPases as a GTPase-activating protein (GAP) for RAGA; loss of GATOR1 desensitizes mTORC1 signalling to nutrient starvation. GATOR1 components have no sequence homology to other proteins, so the function of GATOR1 at the molecular level is currently unknown. Here we used cryo-electron microscopy to solve structures of GATOR1 and GATOR1-Rag GTPases complexes. GATOR1 adopts an extended architecture with a cavity in the middle; NPRL2 links DEPDC5 and NPRL3, and DEPDC5 contacts the Rag GTPase heterodimer. Biochemical analyses reveal that our GATOR1-Rag GTPases structure is inhibitory, and that at least two binding modes must exist between the Rag GTPases and GATOR1. Direct interaction of DEPDC5 with RAGA inhibits GATOR1-mediated stimulation of GTP hydrolysis by RAGA, whereas weaker interactions between the NPRL2-NPRL3 heterodimer and RAGA execute GAP activity. These data reveal the structure of a component of the nutrient-sensing mTORC1 pathway and a non-canonical interaction between a GAP and its substrate GTPase.


Assuntos
Microscopia Crioeletrônica , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/ultraestrutura , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Aminoácidos/deficiência , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura
11.
Nature ; 543(7645): 438-442, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28199306

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy. Amino acids are a key input to this system, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RAGA, and GATOR2, a positive regulator of unknown molecular function. Here we identify a protein complex (KICSTOR) that is composed of four proteins, KPTN, ITFG2, C12orf66 and SZT2, and that is required for amino acid or glucose deprivation to inhibit mTORC1 in cultured human cells. In mice that lack SZT2, mTORC1 signalling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds and recruits GATOR1, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Notably, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signalling. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signalling, which, like GATOR1, is mutated in human disease.


Assuntos
Proteínas de Transporte/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Feminino , Proteínas Ativadoras de GTPase , Glucose/deficiência , Glucose/metabolismo , Humanos , Cadeias alfa de Integrinas , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Especificidade por Substrato , Serina-Treonina Quinases TOR/antagonistas & inibidores
12.
J Biol Chem ; 297(1): 100861, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116056

RESUMO

Cellular growth and proliferation are primarily dictated by the mechanistic target of rapamycin complex 1 (mTORC1), which balances nutrient availability against the cell's anabolic needs. Central to the activity of mTORC1 is the RagA-RagC GTPase heterodimer, which under favorable conditions recruits the complex to the lysosomal surface to promote its activity. The RagA-RagC heterodimer has a unique architecture in that both subunits are active GTPases. To promote mTORC1 activity, the RagA subunit is loaded with GTP and the RagC subunit is loaded with GDP, while the opposite nucleotide-loading configuration inhibits this signaling pathway. Despite its unique molecular architecture, how the Rag GTPase heterodimer maintains the oppositely loaded nucleotide state remains elusive. Here, we applied structure-function analysis approach to the crystal structures of the Rag GTPase heterodimer and identified a key hydrogen bond that stabilizes the GDP-loaded state of the Rag GTPases. This hydrogen bond is mediated by the backbone carbonyl of Asn30 in the nucleotide-binding domain of RagA or Lys84 of RagC and the hydroxyl group on the side chain of Thr210 in the C-terminal roadblock domain of RagA or Ser266 of RagC, respectively. Eliminating this interdomain hydrogen bond abolishes the ability of the Rag GTPase to maintain its functional state, resulting in a distorted response to amino acid signals. Our results reveal that this long-distance interdomain interaction within the Rag GTPase is required for the maintenance and regulation of the mTORC1 nutrient-sensing pathway.


Assuntos
Aminoácidos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/ultraestrutura , Guanosina Trifosfato/química , Humanos , Ligação de Hidrogênio , Hidrólise , Alvo Mecanístico do Complexo 1 de Rapamicina/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/ultraestrutura , Conformação Proteica , Domínios Proteicos/genética , Multimerização Proteica/genética , Transdução de Sinais/genética
13.
J Am Soc Nephrol ; 32(11): 2885-2899, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34607910

RESUMO

BACKGROUND: Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS: We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS: In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS: Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.


Assuntos
Cardiomiopatia Dilatada/genética , Hipercalciúria/genética , Nefropatias/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Nefrocalcinose/genética , Erros Inatos do Transporte Tubular Renal/genética , Serina-Treonina Quinases TOR/metabolismo , Cardiomiopatia Dilatada/metabolismo , Feminino , Células HEK293 , Humanos , Hipercalciúria/metabolismo , Nefropatias/metabolismo , Túbulos Renais Distais/metabolismo , Masculino , Modelos Moleculares , Natriurese/genética , Nefrocalcinose/metabolismo , Linhagem , Conformação Proteica , Erros Inatos do Transporte Tubular Renal/metabolismo , Convulsões/genética , Convulsões/metabolismo , Transdução de Sinais , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
14.
Mol Cell ; 52(5): 643-54, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24211265

RESUMO

The universally conserved signal recognition particle (SRP) system mediates the targeting of membrane proteins to the translocon in a multistep process controlled by GTP hydrolysis. Here we present the 2.6 Å crystal structure of the GTPase domains of the E. coli SRP protein (Ffh) and its receptor (FtsY) in complex with the tetraloop and the distal region of SRP-RNA, trapped in the activated state in presence of GDP:AlF4. The structure reveals the atomic details of FtsY recruitment and, together with biochemical experiments, pinpoints G83 as the key RNA residue that stimulates GTP hydrolysis. Insertion of G83 into the FtsY active site orients a single glutamate residue provided by Ffh (E277), triggering GTP hydrolysis and complex disassembly at the end of the targeting cycle. The complete conservation of the key residues of the SRP-RNA and the SRP protein implies that the suggested chemical mechanism of GTPase activation is applicable across all kingdoms.


Assuntos
Proteínas de Bactérias/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Compostos de Alumínio/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoretos/farmacologia , Ativadores de GTP Fosfo-Hidrolase/farmacologia , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Hidrólise/efeitos dos fármacos , Dados de Sequência Molecular , RNA/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise de Sequência de DNA
15.
Proc Natl Acad Sci U S A ; 115(38): 9545-9550, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181260

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) growth pathway detects nutrients through a variety of sensors and regulators that converge on the Rag GTPases, which form heterodimers consisting of RagA or RagB tightly bound to RagC or RagD and control the subcellular localization of mTORC1. The Rag heterodimer uses a unique "locking" mechanism to stabilize its active (GTPRagA-RagCGDP) or inactive (GDPRagA-RagCGTP) nucleotide states. The Ragulator complex tethers the Rag heterodimer to the lysosomal surface, and the SLC38A9 transmembrane protein is a lysosomal arginine sensor that upon activation stimulates mTORC1 activity through the Rag GTPases. How Ragulator and SLC38A9 control the nucleotide loading state of the Rag GTPases remains incompletely understood. Here we find that Ragulator and SLC38A9 are each unique guanine exchange factors (GEFs) that collectively push the Rag GTPases toward the active state. Ragulator triggers GTP release from RagC, thus resolving the locked inactivated state of the Rag GTPases. Upon arginine binding, SLC38A9 converts RagA from the GDP- to the GTP-loaded state, and therefore activates the Rag GTPase heterodimer. Altogether, Ragulator and SLC38A9 act on the Rag GTPases to activate the mTORC1 pathway in response to nutrient sufficiency.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia , Metabolismo Energético/fisiologia , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Multimerização Proteica/fisiologia , Proteínas Recombinantes/metabolismo
16.
J Biol Chem ; 294(8): 2970-2975, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30651352

RESUMO

mTOR complex 1 (mTORC1) is a major regulator of cell growth and proliferation that coordinates nutrient inputs with anabolic and catabolic processes. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which directly recruit mTORC1 onto the lysosomal surface, its site of activation. The Rag GTPase heterodimer has a unique architecture that consists of two GTPase subunits, RagA or RagB bound to RagC or RagD. Their nucleotide-loading states are strictly controlled by several lysosomal or cytosolic protein complexes that directly detect and transmit the amino acid signals. GATOR1 (GTPase-activating protein (GAP) activity toward Rags-1), a negative regulator of the cytosolic branch of the nutrient-sensing pathway, comprises three subunits, Depdc5 (DEP domain-containing protein 5), Nprl2 (NPR2-like GATOR1 complex subunit), and Nprl3 (NPR3-like GATOR1 complex subunit), and is a GAP for RagA. GATOR1 binds the Rag GTPases via two modes: an inhibitory mode that holds the Rag GTPase heterodimer and has previously been captured by structural determination, and a GAP mode that stimulates GTP hydrolysis by RagA but remains structurally elusive. Here, using site-directed mutagenesis, GTP hydrolysis assays, coimmunoprecipitation experiments, and structural analysis, we probed the GAP mode and found that a critical residue on Nprl2, Arg-78, is the arginine finger that carries out GATOR1's GAP function. Substitutions of this arginine residue rendered mTORC1 signaling insensitive to amino acid starvation and are found frequently in cancers such as glioblastoma. Our results reveal the biochemical bases of mTORC1 inactivation through the GATOR1 complex.


Assuntos
Guanosina Trifosfato , Proteínas Monoméricas de Ligação ao GTP , Proteínas Repressoras , Proteínas Supressoras de Tumor , Substituição de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação de Sentido Incorreto , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
Am J Otolaryngol ; 40(1): 22-29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30249374

RESUMO

PURPOSE: The efficacy of postoperative oral corticosteroids on surgical outcomes in chronic rhinosinusitis with nasal polyps (CRSwNP) patients following endoscopic sinus surgery (ESS) remains controversial. This study evaluated the potential benefits of postoperative oral corticosteroids on surgical outcomes in CRSwNP patients and investigated the differential effects on eosinophilic CRSwNP (ECRSwNP) and noneosinophilic CRSwNP (NECRSwNP). MATERIALS AND METHODS: Patients with bilateral CRSwNP who underwent ESS were enrolled and randomized to receive either oral prednisolone (30 mg/day) or placebo for 2 weeks after surgery. Visual analog scale (VAS) and Sino-Nasal Outcome Test 22 (SNOT-22) scores were chosen as the subjective outcomes, evaluated at preoperative baseline and 1, 3, and 6 months postoperatively. Lund-Kennedy Endoscopic Scores (LKESs) were used as the objective outcome, evaluated at preoperative baseline and at 2 weeks and 2, 3, and 6 months postoperatively. RESULTS: In total, 100 patients with bilateral CRSwNP were enrolled, of whom only 82 completed the 6-month follow-up. The subjective outcomes showed no significant difference at each follow-up points. Of the objective outcomes, the corticosteroid group reporting a trend of improvement in LKESs at 6 months postoperatively (p = 0.05). After stratification by tissue eosinophils, only patients with NECRSwNP (<10 eosinophils/HPF) demonstrated a significant improvement in LKESs at 3 months postoperatively (p = 0.03). CONCLUSIONS: Postoperative oral corticosteroids did not provide additional improvements in VAS and SNOT-22 scores; nevertheless, a trend of LKES improvement was noted at 6 months postoperatively. After stratification by tissue eosinophils, this effect was significant only among NECRSwNP patients at 3 months follow-up.


Assuntos
Eosinofilia/terapia , Glucocorticoides/administração & dosagem , Pólipos Nasais/terapia , Prednisolona/administração & dosagem , Rinite/terapia , Sinusite/terapia , Administração Oral , Adulto , Doença Crônica , Endoscopia , Eosinofilia/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/etiologia , Cuidados Pós-Operatórios , Rinite/etiologia , Sinusite/etiologia , Resultado do Tratamento
19.
Nature ; 492(7428): 271-5, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23235881

RESUMO

Approximately one-third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane. The proper localization of these proteins is mediated by a universally conserved protein-targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences and, through interactions with the SRP receptor, delivers them to the protein-translocation machinery on the target membrane. The SRP is an ancient ribonucleoprotein particle containing an essential, elongated SRP RNA for which precise functions have remained elusive. Here we used single-molecule fluorescence microscopy to show that the Escherichia coli SRP-SRP receptor GTPase complex, after initial assembly at the tetraloop end of SRP RNA, travels over 100 Å to the distal end of this RNA, where rapid GTP hydrolysis occurs. This movement is negatively regulated by the translating ribosome and, at a later stage, positively regulated by the SecYEG translocon, providing an attractive mechanism for ensuring the productive exchange of the targeting and translocation machineries at the ribosome exit site with high spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds that enable the easy exchange of distinct factors and precise timing of molecular events in a complex cellular process; this concept may be extended to similar phenomena in other ribonucleoprotein complexes.


Assuntos
Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/metabolismo , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Conformação Proteica , Transporte Proteico , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Transdução de Sinais
20.
J Biol Chem ; 288(51): 36385-97, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24151069

RESUMO

The signal recognition particle (SRP) RNA is a universally conserved and essential component of the SRP that mediates the co-translational targeting of proteins to the correct cellular membrane. During the targeting reaction, two functional ends in the SRP RNA mediate distinct functions. Whereas the RNA tetraloop facilitates initial assembly of two GTPases between the SRP and SRP receptor, this GTPase complex subsequently relocalizes ∼100 Što the 5',3'-distal end of the RNA, a conformation crucial for GTPase activation and cargo handover. Here we combined biochemical, single molecule, and NMR studies to investigate the molecular mechanism of this large scale conformational change. We show that two independent sites contribute to the interaction of the GTPase complex with the SRP RNA distal end. Loop E plays a crucial role in the precise positioning of the GTPase complex on these two sites by inducing a defined bend in the RNA helix and thus generating a preorganized recognition surface. GTPase docking can be uncoupled from its subsequent activation, which is mediated by conserved bases in the next internal loop. These results, combined with recent structural work, elucidate how the SRP RNA induces GTPase relocalization and activation at the end of the protein targeting reaction.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , GTP Fosfo-Hidrolases/metabolismo , Simulação de Acoplamento Molecular , RNA Citoplasmático Pequeno/química , Partícula de Reconhecimento de Sinal/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/química , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA Citoplasmático Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA