Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(31): 16605-16614, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039962

RESUMO

Despite its significant potential in various disease treatments and diagnostics, microbiotherapy is consistently plagued by multiple limitations ranging from manufacturing challenges to in vivo functionality. Inspired by the strategy involving nonproliferating yet metabolically active microorganisms, we report an intracellular gelation approach that can generate a synthetic polymer network within bacterial cells to solve these challenges. Specifically, poly(ethylene glycol dimethacrylate) (PEGDA, 700 Da) monomers are introduced into the bacterial cytosol through a single cycle of freeze-thawing followed by the initiation of intracellular free radical polymerization by UV light to create a macromolecular PEGDA gel within the bacterial cytosol. The molecular crowding resulting from intracytoplasmic gelation prohibits bacterial division and confers robust resistance to simulated gastrointestinal fluids and bile acids while retaining the ability to secrete functional proteins. Biocompatibility assessments demonstrate that the nondividing gelatinized bacteria are effective in alleviating systemic inflammation triggered by intravenous Escherichia coli injection. Furthermore, the therapeutic efficacy of gelatinized Lactobacillus rhamnosus in colitis mice provides additional support for this approach. Collectively, intracellular gelation indicates a universal strategy to manufacture next-generation live biotherapeutics for advanced microbiotherapy.


Assuntos
Escherichia coli , Polietilenoglicóis , Animais , Camundongos , Escherichia coli/efeitos dos fármacos , Polietilenoglicóis/química , Géis/química , Modelos Animais de Doenças , Colite/tratamento farmacológico , Colite/induzido quimicamente , Metacrilatos/química
2.
Acta Pharmacol Sin ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862818

RESUMO

Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 µM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.

3.
Surg Endosc ; 38(5): 2465-2474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456946

RESUMO

BACKGROUND: Bile duct leaks (BDLs) are serious complications that occurs after hepatobiliary surgery and trauma, leading to rapid clinical deterioration. Endoscopic retrograde cholangiopancreatography (ERCP) is the first-line treatment for BDLs, but it is not clear which patients will respond to this therapy and which patients will require additional surgical intervention. The aim of our study was to explore the predictors of successful ERCP for BDLs. METHODS: A retrospective analysis was conducted using data from six centers' databases. All consecutive patients who were clinically confirmed as BDLs were included in the study. Collected data were demographics, disease severity, and ERCP procedure characteristics. Univariate and multivariate analysis were used to select independent predictive factors that affect the outcome of ERCP for BDLs, and a nomogram was established. Calibration and ROC curves were used to evaluate the models. RESULTS: Four hundred and forty-eight consecutive patients were clinically confirmed as BDLs and 347 were excluded. In the 101 patients included patients, clinical success was achieved in 78 patients (77.2%). In logistic multivariable regression, two independent factors were negatively associated with the success of ERCP: SIRS (OR, 0.183; 95% CI 0.039-0.864; P = 0.032) and high-grade leak (OR 0.073; 95% CI 0.010-0.539; P = 0.010). Two independent factors were positively associated with the success of ERCP: leak-bridging drainage (OR 4.792; 95% CI 1.08-21.21; P = 0.039) and cystic duct leak (OR 6.193; 95% CI 1.03-37.17; P = 0.046). The prediction model with these four factors was evaluated using a receiver-operating characteristic (ROC) curve, which demonstrated an area under the curve of 0.9351. The calibration curve showed that the model had good predictive accuracy. CONCLUSION: Leak-bridging drainage and cystic duct leak are positive predictors for the success of ERCP, while SIRS and high-grade leak are negative predictors. This prediction model with nomogram has good predictive ability and practical clinical value, and may be helpful in clinical decision-making and prognostication.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Nomogramas , Humanos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Complicações Pós-Operatórias/etiologia , Resultado do Tratamento , Adulto , Doenças dos Ductos Biliares/cirurgia , Fístula Anastomótica/etiologia
4.
Cell Mol Biol (Noisy-le-grand) ; 69(15): 95-98, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38279481

RESUMO

This study aimed to explore the mechanism of apoptosis and autophagy of chondrocytes induced by tumor necrosis factor α (TNA-α) by activating the NF-κB signal pathway. For this purpose, 24 SD rats were selected for feeding. The knee cartilage was cut by ophthalmology and the chondrocytes were extracted. The chondrocytes were randomly divided into a control group (CG) and an observation group (OG). TNF-α of 50ng/mL was added before the beginning of the study, while the control group did not receive any treatment. The levels of IL-1, IL-6, IL-12, autophagy markers (Atg5, Atg7, LC3II/I), apoptosis-related indexes (Bax, Bcl-2), NF-κB signal pathway-related indexes (p-p65, p65, IκBα) protein expression, mRNA expression and apoptosis rate in chondrocytes were compared in each group. Results showed that the levels of IL-1, IL-6 and IL-12 in the OG were raised than those in the CG. The expression levels of autophagy markers Atg5, Atg7, LC3II/I and mRNA in the OG were reduced than those in the CG. The apoptosis rate and the expression of BaxmRNA and protein in the OG were higher than those in the CG, while the expression of Bcl-2mRNA and protein were lower than those in the CG. The p-p65, p65, IκBα protein and mRNA related to NF-κB signal pathway in the OG were raised than those in the CG. In conclusion, TNF-α can induce apoptosis and autophagy of chondrocytes by activating the NF-κB signal pathway.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Ratos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Condrócitos/metabolismo , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Transdução de Sinais , Apoptose , Interleucina-12/metabolismo , Autofagia , RNA Mensageiro/metabolismo , Interleucina-1/metabolismo
5.
Nat Commun ; 15(1): 873, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287030

RESUMO

Epigenetic changes may fill a critical gap in our understanding of kidney disease development, as they not only reflect metabolic changes but are also preserved and transmitted during cell division. We conducted a genome-wide cytosine methylation analysis of 399 human kidney samples, along with single-nuclear open chromatin analysis on over 60,000 cells from 14 subjects, including controls, and diabetes and hypertension attributed chronic kidney disease (CKD) patients. We identified and validated differentially methylated positions associated with disease states, and discovered that nearly 30% of these alterations were influenced by underlying genetic variations, including variants known to be associated with kidney disease in genome-wide association studies. We also identified regions showing both methylation and open chromatin changes. These changes in methylation and open chromatin significantly associated gene expression changes, most notably those playing role in metabolism and expressed in proximal tubules. Our study further demonstrated that methylation risk scores (MRS) can improve disease state annotation and prediction of kidney disease development. Collectively, our results suggest a causal relationship between epigenetic changes and kidney disease pathogenesis, thereby providing potential pathways for the development of novel risk stratification methods.


Assuntos
Metilação de DNA , Insuficiência Renal Crônica , Humanos , Metilação de DNA/genética , Cromatina/genética , Cromatina/metabolismo , Estudo de Associação Genômica Ampla , Rim/metabolismo , Epigênese Genética , Insuficiência Renal Crônica/patologia
6.
Protoplasma ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769089

RESUMO

Autophagy regulates the formation of primary cilia, which in turn affects autophagy. The relationship between autophagy and cilia is known to be bidirectional although the specific mechanisms involved have yet to be elucidated. In this study, we found for the first time that ATG8 protein localizes in the basal body of the dorsal kineties and the base of the ventral cirri in Euplotes amieti. ATG8 protein maintains the structural integrity of cilia and plays a role in the construction of the cortical ciliature and microtubule cytoskeleton associated with cilia. ATG8 gene interference leads to the degradation of IFT88, the transport protein in cilia, thus inhibiting the generation of cilia, and affecting the swing of cilia. This influences the swimming speed and cilia pattern, leading to death in Euplotes amieti.

7.
J Agric Food Chem ; 72(31): 17176-17190, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39067070

RESUMO

Water scarcity and land infertility pose significant challenges to agricultural development, particularly in arid and semiarid regions. Improving soil-water-retention capacity and fertilizer utilization efficiency through the application of soil additives has become a pivotal approach in agricultural practices. Hydrogels exhibit exceptional water absorption and fertilizer retention capabilities, making them extensively utilized in the fields of agriculture, forestry, and desert control. Currently, most reviews primarily focus on the raw materials, classification, synthesis methods, and application prospects of hydrogels, with limited attention given to strategies for enhancing water-retention performance, mechanisms underlying fertilizer absorption, and environmental risks. This review covers the commonly used cross-linking methods in hydrogel synthesis and the structure-activity relationship between hydrogels and water as well as fertilizer. Additionally, a thorough analysis of the ecological benefits and risks associated with hydrogels is presented. Finally, future prospects and challenges are delineated from the perspectives of material design and engineering applications.


Assuntos
Fertilizantes , Hidrogéis , Solo , Água , Fertilizantes/análise , Hidrogéis/química , Água/química , Solo/química , Agricultura/métodos
8.
Chemosphere ; 352: 141350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309601

RESUMO

Excessive phosphorus (P) enters the water bodies via wastewater discharges or agricultural runoff, triggering serious environmental problems such as eutrophication. In contrast, P as an irreplaceable key resource, presents notable supply-demand contradictions due to ineffective recovery mechanisms. Hence, constructing a system that simultaneously reduce P contaminants and effective recycling has profound theoretical and practical implications. Metal element-based adsorbents, including metal (hydro) oxides, layered double hydroxides (LDHs) and metal-organic frameworks (MOFs), exhibit a significant chaperone effect stemming from strong orbital hybridization between their intrinsic Lewis acid sites and P (Lewis base). This review aims to parse the structure-effect relationship between metal element-based adsorbents and P, and explores how to optimize the P removal properties. Special emphasis is given to the formation of the metal-P chemical bond, which not only depends on the type of metal in the adsorbent but also closely relates to its surface activity and pore structure. Then, we delve into the intrinsic mechanisms behind these adsorbents' remarkable adsorption capacity and precise targeting. Finally, we offer an insightful discussion of the prospects and challenges of metal element-based adsorbents in terms of precise material control, large-scale production, P-directed adsorption and effective utilization.


Assuntos
Fósforo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Metais , Águas Residuárias , Hidróxidos , Adsorção
9.
Adv Healthc Mater ; : e2303445, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290499

RESUMO

The application of oncolytic peptides has become a powerful approach to induce complete and long-lasting remission in multiple types of carcinomas, as affirmed by the appearance of tumor-associated antigens and adenosine triphosphate (ATP) in large quantities, which jumpstarts the cancer-immunity cycle. However, the ATP breakdown product adenosine is a significant contributor to forming the immunosuppressive tumor microenvironment, which substantially weakens peptide-driven oncolytic immunotherapy. In this study, a lipid-coated micelle (CA@TLM) loaded with a stapled oncolytic peptide (PalAno) and an adenosine 2A receptor (A2AR) inhibitor (CPI-444) is devised to enact tumor-targeted oncolytic immunotherapy and to overcome adenosine-mediated immune suppression simultaneously. The CA@TLM micelle accumulates in tumors with high efficiency, and the acidic tumor microenvironment prompts the rapid release of PalAno and CPI-444. Subsequently, PalAno induces swift membrane lysis of tumor cells and the release of antigenic materials. Meanwhile, CPI-444 blocks the activation of the immunosuppressive adenosine-A2AR signaling pathway. This combined approach exhibits pronounced synergy at stalling tumor growth and metastasis in animal models for triple-negative breast cancer and melanoma, providing a novel strategy for enhanced oncolytic immunotherapy.

10.
Fundam Res ; 2(6): 918-928, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933382

RESUMO

Rare and undiagnosed diseases substantially decrease patient quality of life and have increasingly become a heavy burden on healthcare systems. Because of the challenges in disease-causing gene identification and mechanism elucidation, patients are often confronted with difficulty obtaining a precise diagnosis and treatment. Due to advances in sequencing and multiomics analysis approaches combined with patient-derived iPSC models and gene-editing platforms, substantial progress has been made in the diagnosis and treatment of rare and undiagnosed diseases. The aforementioned techniques also provide an operational basis for future precision medicine studies. In this review, we summarize recent progress in identifying disease-causing genes based on GWAS/WES/WGS-guided multiomics analysis approaches. In addition, we discuss recent advances in the elucidation of pathogenic mechanisms and treatment of diseases with state-of-the-art iPSC and organoid models, which are improved by cell maturation level and gene editing technology. The comprehensive strategies described above will generate a new paradigm of disease classification that will significantly promote the precision and efficiency of diagnosis and treatment for rare and undiagnosed diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA