Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytometry A ; 85(4): 339-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24347051

RESUMO

Fluorescence in situ hybridization (FISH) is the most widely used molecular technique to visualize chromosomal abnormalities. Here, we describe a novel 3D modeling approach to allow precise shape estimation and localization of FISH signals in the nucleus of human embryonic stem cells (hES) undergoing progressive but defined aneuploidy. The hES cell line WA09 acquires an extra copy of chromosome 12 in culture with increasing passages. Both diploid and aneuploid nuclei were analyzed to quantitate the differences in the localization of centromeric FISH signals for chromosome 12 as it transitions from euploidy to aneuploidy. We employed superquadric modeling primitives coupled with principal component analysis to determine the 3D position of FISH signals within the nucleus. A novel aspect of our modeling approach is that it allows comparison of FISH signals across multiple cells by normalizing the position of the centromeric signals relative to a reference landmark in oriented nuclei. Using this model we present evidence of changes in the relative positioning of centromeres in trisomy-12 cells when compared with diploid cells from the same population. Our analysis also suggests a significant change in the spatial distribution of at least one of the FISH signals in the aneuploid chromosome complements implicating that an overall change in centromere position may occur in trisomy-12 due to the addition of an extra chromosome. These studies underscore the unique utility of our modeling algorithms in quantifying FISH signals in three dimensions.


Assuntos
Algoritmos , Núcleo Celular/genética , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Hibridização in Situ Fluorescente/métodos , Aneuploidia , Linhagem Celular , Diploide , Células-Tronco Embrionárias , Humanos , Modelos Teóricos , Análise de Componente Principal
2.
Daru ; 20(1): 93, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23351907

RESUMO

BACKGROUND AND THE PURPOSE OF THE STUDY: Carvedilol nonselective ß-adrenoreceptor blocker, chemically (±)-1-(Carbazol-4-yloxy)-3-[[2-(o-methoxypHenoxy) ethyl] amino]-2-propanol, slightly soluble in ethyl ether; and practically insoluble in water, gastric fluid (simulated, TS, pH 1.1), and intestinal fluid (simulated, TS without pancreatin, pH 7.5) Compounds with aqueous solubility less than 1% W/V often represents dissolution rate limited absorption. There is need to enhance the dissolution rate of carvedilol. The objective of our present investigation was to compare chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. METHODS: The different formulations were prepared by different methods like solvent change approach to prepare hydrosols, solvent evaporation technique to form solid dispersions and cogrind mixtures. The prepared formulations were characterized in terms of saturation solubility, drug content, infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), electron microscopy, in vitro dissolution studies and stability studies. RESULTS: The practical yield in case of hydrosols was ranged from 59.76 to 92.32%. The drug content was found to uniform among the different batches of hydrosols, cogrind mixture and solid dispersions ranged from 98.24 to 99.89%. There was significant improvement in dissolution rate of carvedilol with chitosan chlorhdyrate as compare to chitosan and explanation to this behavior was found in the differences in the wetting, solubilities and swelling capacity of the chitosan and chitosan salts, chitosan chlorhydrate rapidly wet and dissolve upon its incorporation into the dissolution medium, whereas the chitosan base, less water soluble, would take more time to dissolve. CONCLUSION: This technique is scalable and valuable in manufacturing process in future for enhancement of dissolution of poorly water soluble drugs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-22255699

RESUMO

In this study, we describe the utility of the zebrafish model of in-vivo blood vessel formation as a tool for chemical risk assessment. Time-lapse confocal imaging of embryonic vasculature in the zebrafish is used in conjunction with digital image analysis to monitor and quantify the effect of toxins on vascular development. Non-rigid registration is used to capture changes in vascular morphology over time. Vascular formation in healthy normal and arsenic treated embryos was evaluated for differences in vascular structure using the algorithms developed. Although, the temporal progression of vascular development was similar, significant differences were observed in vessel structure between the toxin treated and healthy fish. This study revealed, for the first time, that vital vascular structures in fish maybe affected by exposure to arsenic. This technique allowed visualization of vascular abnormalities in embryos showing no external signs of malformations.


Assuntos
Arsênio/toxicidade , Bioensaio/métodos , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/embriologia , Imageamento Tridimensional/métodos , Testes de Toxicidade/métodos , Peixe-Zebra/embriologia , Animais , Microscopia de Fluorescência/métodos , Peixe-Zebra/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA