Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Genet ; 18(12): e1010515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36459518

RESUMO

Millions of patients suffer from silicosis, but it remains an uncurable disease due to its unclear pathogenic mechanisms. Though the Nlrp3 inflammasome is involved in silicosis pathogenesis, inhibition of its classic downstream factors, Caspase-1 and Gsdmd, fails to block pyroptosis and cytokine release. To clarify the molecular mechanism of silicosis pathogenesis for new therapy, we examined samples from silicosis patients and genetic mouse models. We discovered an alternative pyroptotic pathway which requires cleavage of Gsdme by Caspases-3/8 in addition to Caspase-1/Gsdmd. Consistently, Gsdmd-/-Gsdme-/- mice showed markedly attenuated silicosis pathology, and Gsdmd-/-Gsdme-/- macrophages were resistant to silica-induced pyroptosis. Furthermore, we found that in addition to Caspase 1, Caspase-8 cleaved IL-1ß in silicosis, explaining why Caspase-1-/- mice also suffered from silicosis. Finally, we found that inhibitors of Caspase-1, -3, -8 or an FDA approved drug, dimethyl fumarate, could dramatically alleviate silicosis pathology through blocking cleavage of Gsdmd and Gsdme. This study highlights that Caspase-1/Gsdmd and Caspase-3/8/Gsdme-dependent pyroptosis is essential for the development of silicosis, implicating new potential targets and drug for silicosis treatment.


Assuntos
Silicose , Camundongos , Animais , Caspase 8 , Caspase 1/genética , Caspase 3/genética , Silicose/tratamento farmacológico , Silicose/genética , Piroptose/genética
2.
Am J Pathol ; 189(5): 1041-1052, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790561

RESUMO

Missense mutations in the gasdermin-A3 (Gsdma3) gene are associated with skin inflammation and hair loss in mice. However, the physiological function of Gsdma3 remains unclear. Herein, we reported that mice carrying the Gsdma3 Y344H mutation that encodes a presumptive activated form of Gsdma3 show increased heat production along with lower body fat percentages. Detailed analysis indicated that this metabolic phenotype is mediated by serum IL-6-induced up-regulation of thermogenesis in brown adipose tissue. The mutant form of Gsdma3 promotes the expression of IL-6 in the epidermis in a c-Jun N-terminal kinase (JNK) signaling-dependent manner. The higher whole-body heat production in alopecia and excoriation mice could be suppressed by an IL-6 receptor/GP130 inhibitor. Our results uncovered Gsdma3/IL-6-dependent cross talk between the skin and brown adipose tissue.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Alopecia/fisiopatologia , Interleucina-6/metabolismo , Proteínas/metabolismo , Fator de Transcrição STAT3/metabolismo , Dermatopatias/fisiopatologia , Termogênese , Animais , Regulação da Temperatura Corporal , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Proteínas/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais
3.
Mol Ther ; 25(12): 2676-2688, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28919376

RESUMO

Emerging evidence suggests that dysregulated microRNAs (miRNAs) play a pivotal role in osteoarthritis (OA), but the role of specific miRNAs remains unclear. Accordingly, we identified OA-associated miRNAs and functional validation of results. Here, we demonstrate that miR-218-5p is significantly upregulated in moderate and severe OA and correlates with scores on a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-218-5p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28/I2 cells, PIK3C2A mRNA was identified as a target of miR-218-5p. Downregulation of miR-218-5p dramatically promoted expression of PIK3C2A and its downstream target proteins, such as Akt, mTOR, S6, and 4EBP1. More importantly, OA mice exposed to a miR-218-5p inhibitor were protected from cartilage degradation and had reduced proteoglycan loss and reduced loss of articular chondrocyte cellularity compared with control mice. miR-218-5p is a novel inducer of cartilage destruction via modulation of PI3K/Akt/mTOR signaling. Inhibition of endogenous miR-218-5p expression/activity appears to be an attractive approach to OA treatment.


Assuntos
MicroRNAs , Osteoartrite/genética , Idoso , Animais , Biomarcadores , Estudos de Casos e Controles , Proliferação de Células , Condrócitos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reporter , Terapia Genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoartrite/patologia , Osteoartrite/terapia , Fosfatidilinositol 3-Quinases/genética , Plasmídeos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Reprodutibilidade dos Testes , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transfecção
4.
Biol Pharm Bull ; 41(9): 1423-1429, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899181

RESUMO

Recent studies suggested that excessive T helper (Th)1/17 cells concomitant with regulatory T cell deficiency might play important roles in Crohn's disease. Anti-cluster of differentiation 52 (CD52) monoclonal antibody (mAb), which aims on CD52 antigen on mature immunocytes, has both T cell depletion and immunosuppressive activities. In this study, we evaluated the therapeutic effects and possible mechanisms of anti-CD52 treatment on interleukin-10 (IL-10) deficient mouse. Anti-mouse CD52 mAb was administered to C3H/HeJBir.IL-10-/- (C3H.IL-10-/-) mice intraperitoneally 20 µg per week for 2 weeks. The disease activity index, body weight, the histological grading of colitis, and levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-17 and IL-6 in colon were quantified after treatment. In addition, CD25, Forkhead box P3 (Foxp3) and transforming growth factor (TGF)-ß gene as well as the percentage of CD25+Foxp3+ T cells in colon were also measured. The severity of colitis in IL-10-/- mice was significantly decreased by the treatment, with improvement of colon histological grade. The treatment also decreased the TNF-α, IFN-γ, IL-17 and IL-6 levels in colon. Furthermore, the treatment up-regulated the mRNA expression of CD25, Foxp3 and TGF-ß gene as well as the percentage of CD25+Foxp3+ T cells in colon lamina propria mononuclear cells (LPMCs) of IL-10-/- mice. Our data might indicate that anti-CD52 treatment could ameliorate the colitis of C3H.IL-10-/- mice and it might be related to the suppression of Th1/17 related inflammation and the promotion of regulatory T cell differentiation. Thus, our data reveals that anti-CD52 treatment may hold potential for clinical applications for Crohn's disease treatment.


Assuntos
Antígeno CD52/metabolismo , Colite/metabolismo , Interleucina-10/deficiência , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo , Animais , Antígeno CD52/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Colite/tratamento farmacológico , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Resultado do Tratamento
5.
Mol Carcinog ; 55(10): 1399-410, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26310813

RESUMO

Cryptotanshinone (CT), one major lipophilic component isolated from Salvia miltiorrhiza Bunge, has shown to possess chemopreventive properties against various types of cancer cells. In this study, CT was shown to be a potent anti-angiogenic agent in zebrafish, and mouse models and could limit tumor growth by inhibiting tumor angiogenesis. We further found that CT could inhibit the proliferation, migration, angiogenic sprouting, and tube formation of HUVECs. In addition, we demonstrated that CT could lower the level of TNF-α due to the destabilization of TNF-α mRNA, which associated with regulating 3'-untranslated region (3'-UTR) of TNF-α and preventing the translocation of RNA binding protein, HuR, from the nucleus to the cytoplasm. Moreover, the underlying mechanism responsible for the regulation in angiogenesis by CT was partially related to the suppression of NF-κB, and STAT3 activity. Based on the abilities of CT in targeting tumor cells, inhibiting angiogenesis, and destroying tumor vasculature, CT is worthy of further investigation for preventive, and therapeutic purposes in cancer. © 2015 Wiley Periodicals, Inc.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/tratamento farmacológico , Fenantrenos/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fenantrenos/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
6.
Biochem J ; 468(2): 325-36, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825937

RESUMO

Gasdermin A3 (Gsdma3) was originally identified in association with hair-loss phenotype in mouse mutants. Our previous study found that AE mutant mice, with a Y344H substitution at the C-terminal domain of Gsdma3, display inflammation-dependent alopecia and excoriation [Zhou et al. (2012) Am. J. Pathol. 180, 763-774]. Interestingly, we found that the newly-generated null mutant of Gsdma3 mice did not display the skin dysmorphology, indicating that Gsdma3 is not essential for differentiation of epidermal cells and maintenance of the hair cycle in normal physiological conditions. Consistently, human embryonic kidney (HEK)293 and HaCaT cells transfected with wild-type (WT) Gsdma3 did not show abnormal morphology. However, Gsdma3 Y344H mutation induced autophagy. Gsdma3 N-terminal domain, but not the C-terminal domain, also displayed the similar pro-autophagic activity. The Gsdma3 Y344H mutant protein and N-terminal domain-induced autophagy was associated with mitochondria and ROS generation. Co-expression of C-terminal domain reversed the cell autophagy induced by N-terminal domain. Moreover, C-terminal domain could be co-precipitated with N-terminal domain. These data indicated that the potential pro-autophagic activity of WT Gsdma3 protein is suppressed through an intramolecular inhibition mechanism. Studies on other members of the GSDM family suggested this mechanism is conserved in several sub-families.


Assuntos
Autofagia , Morte Celular , Mutação/genética , Proteínas/fisiologia , Animais , Western Blotting , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias , Fenótipo , Espécies Reativas de Oxigênio
7.
Immunology ; 144(2): 254-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25087772

RESUMO

Intestinal inflammation causes tight junction changes and death of epithelial cells, and plays an important role in the development of Crohn's disease (CD). CD52 monoclonal antibody (CD52 mAb) directly targets the cell surface CD52 and is effective in depleting mature lymphocytes by cytolytic effects in vivo, leading to long-lasting changes in adaptive immunity. The aim of this study was to investigate the therapeutic effect of CD52 mAb on epithelial barrier function in animal models of IBD. Interleukin-10 knockout mice (IL-10(-/-) ) of 16 weeks with established colitis were treated with CD52 mAb once a week for 2 weeks. Severity of colitis, CD4(+) lymphocytes and cytokines in the lamina propria, epithelial expression of tight junction proteins, morphology of tight junctions, tumour necrosis factor-α (TNF-α)/TNF receptor 2 (TNFR2) mRNA expression, myosin light chain kinase (MLCK) expression and activity, as well as epithelial apoptosis in proximal colon were measured at the end of the experiment. CD52 mAb treatment effectively attenuated colitis associated with decreased lamina propria CD4(+) lymphocytes and interferon-γ/IL-17 responses in colonic mucosa in IL-10(-/-) mice. After CD52 mAb treatment, attenuation of colonic permeability, increased epithelial expression and correct localization of tight junction proteins (occludin and zona occludens protein-1), as well as ameliorated tight junction morphology were observed in IL-10(-/-) mice. CD52 mAb treatment also effectively suppressed the epithelial apoptosis, mucosa TNF-α mRNA expression, epithelial expression of long MLCK, TNFR2 and phosphorylation of MLC. Our results indicated that anti-CD52 therapy may inhibit TNF-α/TNFR2-mediated epithelial apoptosis and MLCK-dependent tight junction permeability by depleting activated T cells in the gut mucosa.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Glicoproteínas/antagonistas & inibidores , Interleucina-10/genética , Mucosa Intestinal/fisiologia , Junções Íntimas/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Apoptose/imunologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Antígeno CD52 , Colite/tratamento farmacológico , Colite/imunologia , Colo/imunologia , Glicoproteínas/imunologia , Inflamação/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa/citologia , Mucosa/imunologia , Quinase de Cadeia Leve de Miosina/biossíntese , Ocludina/biossíntese , RNA Mensageiro/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/genética , Junções Íntimas/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Proteína da Zônula de Oclusão-1/biossíntese
8.
Br J Nutr ; 114(2): 181-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26104043

RESUMO

A defect in the intestinal barrier is one of the characteristics of Crohn's disease (CD). The tight junction (TJ) changes and death of epithelial cells caused by intestinal inflammation play an important role in the development of CD. DHA, a long-chain PUFA, has been shown to be helpful in treating inflammatory bowel disease in experimental models by inhibiting the NF-κB pathway. The present study aimed at investigating the specific effect of DHA on the intestinal barrier function in IL-10-deficient mice. IL-10-deficient mice (IL-10(-/-)) at 16 weeks of age with established colitis were treated with DHA (i.g. 35.5 mg/kg per d) for 2 weeks. The severity of their colitis, levels of pro-inflammatory cytokines, epithelial gene expression, the distributions of TJ proteins (occludin and zona occludens (ZO)-1), and epithelial apoptosis in the proximal colon were measured at the end of the experiment. DHA treatment attenuated the established colitis and was associated with reduced infiltration of inflammatory cells in the colonic mucosa, lower mean histological scores and decreased levels of pro-inflammatory cytokines (IL-17, TNF-α and interferon-γ). Moreover, enhanced barrier function was observed in the DHA-treated mice that resulted from attenuated colonic permeability, rescued expression and corrected distributions of occludin and ZO-1. The results of the present study indicate that DHA therapy may ameliorate experimental colitis in IL-10(-/-) mice by improving the intestinal epithelial barrier function.


Assuntos
Colite/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Interleucina-10/genética , Intestinos/efeitos dos fármacos , Animais , Apoptose , Colite/patologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interferon gama/metabolismo , Interleucina-10/deficiência , Interleucina-17/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Ocludina/genética , Ocludina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
9.
Cell Death Differ ; 27(2): 466-481, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209359

RESUMO

Hypomagnesemia is a significant risk factor for critically ill patients to develop sepsis, a life-threatening disease with a mortality rate over 25%. Our clinic data analysis showed that hypomagnesemia is associated with a decreased monocyte count in septic patients. At the cellular level, we found that Mg2+ inhibits pyroptosis. Specifically, Mg2+ limits the oligomerization and membrane localization of gasdermin D N-terminal (GSDMD-NT) upon the activation of either the canonical or noncanonical pyroptotic pathway. Mechanistically, we demonstrated that Ca2+ influx is a prerequisite for the function of GSDMD-NT. Mg2+ blocks Ca2+ influx by inhibiting the ATP-gated Ca2+ channel P2X7, thereby impeding the function of GSDMD-NT and inhibiting lipopolysaccharide (LPS)-induced noncanonical pyroptosis. Furthermore, Mg2+ administration protects mice from LPS-induced lethal septic shock. Together, our data reveal the underlying mechanism of how Mg2+ inhibits pyroptosis and suggest potential clinic applications of magnesium supplementation for sepsis prevention and treatment.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Magnésio/farmacologia , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Células Cultivadas , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Magnésio/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo , Sepse/metabolismo , Sepse/patologia
10.
J Mol Cell Biol ; 11(12): 1069-1082, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30860577

RESUMO

Disrupted mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation are often associated with macrophage pyroptosis. It remains unclear how these forms of mitochondrial dysfunction relate to inflammasome activation and gasdermin-D (Gsdmd) cleavage, two central steps of the pyroptotic process. Here, we also found MMP collapse and ROS generation induced by Nlrp3 inflammasome activation as previous studies reported. The elimination of ROS alleviated the cleavage of Gsdmd, suggesting that Gsdmd cleavage occurs downstream of ROS release. Consistent with this result, hydrogen peroxide treatment augmented the cleavage of Gsdmd by caspase-1. Indeed, four amino acid residues of Gsdmd were oxidized under oxidative stress in macrophages. The efficiency of Gsdmd cleavage by inflammatory caspase-1 was dramatically reduced when oxidative modification was blocked by mutation of these amino acid residues. These results demonstrate that Gsdmd oxidation serves as a de novo mechanism by which mitochondrial ROS promote Nlrp3 inflammasome-dependent pyroptotic cell death.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Inflamassomos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Modelos Biológicos , Estresse Oxidativo , Proteínas de Ligação a Fosfato/genética , Proteólise
11.
JPEN J Parenter Enteral Nutr ; 43(3): 401-411, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277587

RESUMO

BACKGROUND: The aim of this study was to investigate the therapeutic mechanism of a specific multifiber mix diet (MF) designed to match the fiber content of a healthy diet in interleukin-10 knockout (IL-10-/- ) mice with spontaneous chronic colitis displaying similar characteristics to those of human Crohn's disease (CD). METHODS: Sixteen-week-old IL-10-/- mice were used for the experiments with MF diet for 4 weeks. Severity of colitis, the composition of the fecal microbiota, expression of Th1/Th17 cells, myeloperoxidase (MPO) concentrations, and inflammatory cytokines and chemokines (tumor necrosis factor-α [TNF-α], IL-6, macrophage inflammatory protein [MIP]-2, monocyte chemoattractant protein-1 [MCP-1], and MIP-1α), as well as arginase 1 (Arg1) and signal transducers and activators of transcription 6 (STAT6) proteins, were measured at the end of the experiment. In addition, the corresponding metabolites (short-chain fatty acids) of MF on CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) were also detected in vivo and in vitro. RESULTS: MF treatment significantly ameliorated colitis associated with decreased lamina propria frequency of Th1/Th17 cells, MPO concentrations, and inflammatory cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1, and MIP-1α). An increase in gut microbial diversity was observed after MF treatment compared with IL-10-/- mice, including a significant increase in bacteria belonging to the Firmicutes phylum and a significant decrease in bacteria belonging to the Proteobacteria phylum. Moreover, MF treatment increased the differentiation of CD4+ CD25+ Foxp3+ Tregs mainly by microbial metabolites butyrate. In addition, Arg1 and STAT6 proteins were also significantly increased after MF treatment. CONCLUSIONS: These results shed light on the contribution of MF treatment to the CD mouse model and suggest that MF has potential as a therapeutic strategy for enhancing efficacy in inducing remission in patients with active CD.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Colite/dietoterapia , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Dieta/métodos , Fibras na Dieta/administração & dosagem , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissacarídeos/administração & dosagem
12.
J Mol Cell Biol ; 11(6): 496-508, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321352

RESUMO

Gasdermin B (GSDMB) has been reported to be associated with immune diseases in humans, but the detailed molecular mechanisms remain unsolved. The N-terminus of GSDMB by itself, unlike other gasdermin family proteins, does not induce cell death. Here, we show that GSDMB is highly expressed in the leukocytes of septic shock patients, which is associated with increased release of the gasdermin D (GSDMD) N-terminus. GSDMB expression and the accumulation of the N-terminal fragment of GSDMD are induced by the activation of the non-canonical pyroptosis pathway in a human monocyte cell line. The downregulation of GSDMB alleviates the cleavage of GSDMD and cell death. Consistently, the overexpression of GSDMB promotes GSDMD cleavage, accompanied by increased LDH release. We further found that GSDMB promotes caspase-4 activity, which is required for the cleavage of GSDMD in non-canonical pyroptosis, by directly binding to the CARD domain of caspase-4. Our study reveals a GSDMB-mediated novel regulatory mechanism for non-canonical pyroptosis and suggests a potential new strategy for the treatment of inflammatory diseases.


Assuntos
Caspases Iniciadoras/metabolismo , Monócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Linhagem Celular , Humanos , Domínios Proteicos
13.
Stem Cell Res Ther ; 9(1): 47, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482657

RESUMO

BACKGROUND: Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. METHODS: Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. RESULTS: We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. CONCLUSION: We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.


Assuntos
Reprogramação Celular , Embrião de Mamíferos/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fosforilação Oxidativa , Proteína Quinase C/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Oxirredução , Proteína Quinase C/antagonistas & inibidores
14.
Stem Cell Res Ther ; 9(1): 111, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673401

RESUMO

The original article [1] mistakenly omitted a source of funding, and the authors would like to rectify this by acknowledging the additional support of the Natural Science Foundation in Jiangsu Province (BK20150687).

15.
Nat Commun ; 9(1): 5051, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487517

RESUMO

Understanding the molecular mechanisms regulating the maintenance and destruction of intervertebral disc may lead to the development of new therapies for intervertebral disc degeneration (IDD). Here we present evidence from miRNA microarray analyses of clinical data sets along with in vitro and in vivo experiments that miR-141 is a key regulator of IDD. Gain- and loss-of-function studies show that miR-141 drives IDD by inducing nucleus pulposus (NP) apoptosis. Furthermore, miR-141 KO in mice attenuated spontaneous and surgically induced IDD. Mechanistically, miR-141 promotes IDD development by targeting and depleting SIRT1, a negative regulator of NF-κB pathway. Therapeutically, upregulation or downregulation of miR-141 by nanoparticle delivery in IDD model aggravated or alleviated experimental IDD, respectively. Our findings reveal a novel mechanism by which miR-141, in part, promotes IDD progression by interacting with SIRT1/NF-κB pathway. Blockade of miR-141 in vivo may serve as a potential therapeutic approach in the treatment of IDD.


Assuntos
Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Animais , Degeneração do Disco Intervertebral/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Análise em Microsséries , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo
16.
Cell Mol Immunol ; 15(6): 630-639, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28626237

RESUMO

Body weight regain often causes failure of obesity therapies while the underlying mechanism remains largely unknown. In this study, we report that immune cells, especially CD4+ T cells, mediate the 'memory' of previous obese status. In a weight gain-loss-regain model, we found that C57BL/6J mice with an obesity history showed a much faster rate of body weight regain. This obesity memory could last for at least 2 months after previously obese mice were kept at the same body weight as non-obese mice. Surprisingly, such obesity memory was abrogated by dexamethasone treatment, whereas immunodeficient Rag1-/- and H2A-/- mice failed to establish such memory. Rag1-/- mice repossessed the obesity memory when immune cells or CD4+ T cells isolated from previously obese mice were transferred. Furthermore, depletion of CD4+ T cells led to obesity memory ablation. Taken together, we conclude that CD4+ T cells mediate obesity memory and promote weight regain.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Memória Imunológica , Obesidade/imunologia , Aumento de Peso/imunologia , Animais , Metabolismo Basal , Hiperfagia/complicações , Camundongos Endogâmicos C57BL , Termogênese , Redução de Peso/imunologia
18.
Oncotarget ; 8(5): 8397-8405, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28039475

RESUMO

It has been proved that interleukin-10-knockout (IL-10 KO) mice display the most similar characteristics to that of human Crohn's disease (CD). Docosahexaenoic acid (DHA) has well established beneficial effects on human and animal models health with potent anti-inflammatory effects with poorly understood mechanisms. This study was aimed at figuring out whether DHA could ameliorate the Crohn's colitis by activating GPR120 and whether GPR120 could be a potential therapeutic target for CD.16 week-old mice included in our present study were divided into three groups, WT group, IL-10 KO group and DHA group(IL-10 KO mice with DHA treatment, i.g., 35.5mg/kg/d), containing 8 mice in each group. The severity of colitis, pro-inflammatory cytokines concentrations, the expression/distribution of protein GPR120 and TAK1/IKK-α/IkB-α/p65 pathway in the proximal colons were evaluated at the end of the experiment. Administration of DHA showed promising results in the experimental chronic colitis (demonstrated by reduced infiltration of inflammatory cells, lowered inflammation scores, decreased pro-inflammatory cytokines) and body weight loss improvement. Moreover, in the DHA-treated mice, enhanced expression and improved distribution integrity of protein GPR120 were observed, which was probably associated with the regulation of TAK1/IKK-α/IkB-α/p65 pathway. Our results indicated that triggering GPR120 via the inhibition of TAK1/IKK-α/IkB-α/p65 pathway might be an important target for Crohn's colitis.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Fármacos Gastrointestinais/farmacologia , Interleucina-10/deficiência , Receptores Acoplados a Proteínas G/agonistas , Animais , Colite/genética , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Mediadores da Inflamação/metabolismo , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
19.
Am J Transl Res ; 8(6): 2758-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27398158

RESUMO

BACKGROUND: Approximately 50% of patients with inflammatory bowel disease (IBD) suffer from anemia, which is prevalently caused by iron deficiency. Maresin 1 (MaR1) is a novel docosahexaenoic acid-derived pro-resolving agent that promotes the resolution of inflammation. The aim of the present study was to investigate the therapeutic effects of MaR1 on iron-deficient anemia in IL-10 knockout (IL-10(-/-)) mice with spontaneous chronic colitis. METHODS: IL-10(-/-) mice of 16 weeks of age with established colitis were used for the experiments with MaR1 treatment for 2 weeks. Histologic injury, CD4+ lymphocyte values in the lamina propria, blood hemoglobin, hematocrit, serum iron concentrations, transferrin saturation, splenic iron stores, levels of inflammatory cytokines, expression of liver hepcidin mRNA, and western blotting of STAT3 were analyzed in this study. RESULTS: MaR1 treatment (0.3 ng/mouse) effectively attenuated histological colitis typically associated with decreased CD4+ lymphocytes in the lamina propria as well as the concentrations of MPO, TNF-α, IFN-γ, IL-6 and IL-17 (P<0.05). Furthermore, reduced expression of liver hepcidin mRNA and p-STAT3 expression, as well as increased hemoglobin concentration, hematocrit, levels of serum iron, transferrin saturation and splenic iron stores were found in IL-10(-/-) mice after MaR1 treatment (P<0.05). CONCLUSIONS: These results indicate that MaR1 treatment ameliorates iron-deficient anemia by reducing colonic inflammation and inhibiting hepcidin expression though the IL-6/STAT3 pathway.

20.
Sci Rep ; 6: 26735, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27226137

RESUMO

While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress.


Assuntos
Apoptose/fisiologia , Fertilidade/fisiologia , Antígenos Específicos de Melanoma , Família Multigênica/fisiologia , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Animais , Feminino , Masculino , Antígenos Específicos de Melanoma/genética , Antígenos Específicos de Melanoma/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA