Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
FASEB J ; 34(3): 3554-3569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31997395

RESUMO

Intervertebral disc degeneration (IDD) is the main cause of low back pain and the mechanism of which is far from fully revealed. Although inflammation directed nucleus pulposus (NP) extracellular matrix metabolism dysregulation is known to be the main cause of the degeneration process, few is known about the protective factors. Using high-throughput label-free proteomics, we found that inflammation-related autocrine factor Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is highly expressed in the NP cells during degeneration. Immunohistochemical analysis show that the expression of CHI3L1 is NP tissue specific, and increase significantly during degeneration. Overexpression of CHI3L1 significantly decrease the catabolism, and increase the anabolism of extracellular matrix. Knockdown of CHI3L1 using siRNAs show the opposite results, which imply that the protective role of CHI3L1 in IDD. Using high-throughput RNA sequencing and functional analyses, we find that AKT3 expression and its phosphorylation is mainly regulated by CHI3L1. And lastly, the mechanism of which is also validated using human and mouse degenerated NP tissues. In summary, our findings show that the inflammation-related autocrine factor CHI3L1 is NP specific, and it protects IDD by promoting the AKT3 signaling, which may serve as a potential therapeutic target in intervertebral disc degeneration.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Western Blotting , Células Cultivadas , Proteína 1 Semelhante à Quitinase-3/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Degeneração do Disco Intervertebral/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/genética , Fosforilação/fisiologia , Proteômica , Proteínas Proto-Oncogênicas c-akt/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Nat Commun ; 13(1): 2467, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513391

RESUMO

Ossification of the posterior longitudinal ligament (OPLL) is an emerging spinal disease caused by heterotopic ossification of the posterior longitudinal ligament. The pathological mechanism is poorly understood, which hinders the development of nonsurgical treatments. Here, we set out to explore the function and mechanism of small extracellular vesicles (sEVs) in OPLL. Global miRNA sequencings are performed on sEVs derived from ligament cells of normal and OPLL patients, and we have showed that miR-320e is abundantly expressed in OPLL-derived sEVs compare to other sEVs. Treatment with either sEVs or miR-320e significantly promote the osteoblastic differentiation of normal longitudinal ligament cells and mesenchymal stem cells and inhibit the osteoclastic differentiation of monocytes. Through a mechanistic study, we find that TAK1 is a downstream target of miR-320e, and we further validate these findings in vivo using OPLL model mice. Together, our data demonstrate that OPLL ligament cells secrete ossification-promoting sEVs that contribute to the development of ossification through the miR-320e/TAK1 axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Ossificação do Ligamento Longitudinal Posterior , Animais , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Humanos , Ligamentos Longitudinais/patologia , MAP Quinase Quinase Quinases , Camundongos , MicroRNAs/genética , Ossificação do Ligamento Longitudinal Posterior/genética , Ossificação do Ligamento Longitudinal Posterior/patologia , Osteogênese/genética
3.
Theranostics ; 10(17): 7492-7509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685001

RESUMO

Objectives: Ossification of the posterior longitudinal ligament (OPLL) presents as the development of heterotopic ossification in the posterior longitudinal ligament of the spine. The etiology of OPLL is genetically linked, as shown by its high prevalence in Asian populations. However, the molecular mechanism of the disease remains obscure. In this study, we explored the function and mechanism of OPLL-specific microRNAs. Methods: The expression levels of the ossification-related OPLL-specific miR-181 family were measured in normal or OPLL ligament tissues. The effect of miR-181a on the ossification of normal or pathogenic ligament cells was tested using real-time polymerase chain reaction (PCR), Western blot, alizarin red staining and alkaline phosphatase (ALP) staining. The candidate targets of miR-181 were screened using a dual luciferase reporter assay and functional analysis. The link between miR-181a and its target PBX1 was investigated using chromatin immunoprecipitation, followed by real-time PCR detection. Histological and immunohistochemical analysis as well as micro-CT scanning were used to evaluate the effects of miR-181 and its antagonist using both tip-toe-walking OPLL mice and in vivo bone formation assays. Results: Using bioinformatic analysis, we found that miR-181a-5p is predicted to play important roles in the development of OPLL. Overexpression of miR-181a-5p significantly increased the expression of ossification-related genes, staining level of alizarin red and ALP activity, while the inhibition of miR-181a-5p by treatment with an antagomir had the opposite effects. Functional analysis identified PBX1 as a direct target of miR-181a-5p, and we determined that PBX1 was responsible for miR-181a-5p's osteogenic phenotype. By chromatin immunoprecipitation assay, we found that miR-181a-5p controls ligament cell ossification by regulating PBX1-mediated modulation of histone methylation and acetylation levels in the promoter region of osteogenesis-related genes. Additionally, using an in vivo model, we confirmed that miR-181a-5p can substantially increase the bone formation ability of posterior ligament cells and cause increased osteophyte formation in the cervical spine of tip-toe-walking mice. Conclusions: Our data unveiled the mechanism by which the miR-181a-5p/PBX1 axis functions in the development of OPLL, and it revealed the therapeutic effects of the miR-181a-5p antagomir in preventing OPLL development both in vivo and in vitro. Our work is the first to demonstrate that microRNA perturbation could modulate the development of OPLL through epigenetic regulation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Ossificação do Ligamento Longitudinal Posterior/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Acetilação/efeitos dos fármacos , Adulto , Idoso , Animais , Antagomirs/administração & dosagem , Células Cultivadas , Biologia Computacional , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Histonas/genética , Humanos , Ligamentos Longitudinais/citologia , Ligamentos Longitudinais/diagnóstico por imagem , Ligamentos Longitudinais/patologia , Ligamentos Longitudinais/cirurgia , Masculino , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Ossificação do Ligamento Longitudinal Posterior/patologia , Ossificação do Ligamento Longitudinal Posterior/cirurgia , Cultura Primária de Células , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA