Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(6): e2205797, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461700

RESUMO

Highly porous multi-responsive shape memory foams have unique advantages in designing 3D materials with lightweight for varied applications. Herein, a facile and efficient approach to fabricating a thermo-, electro-, and photo-responsive shape memory composite foam is demonstrated. A specific multi-step carbonization protocol is adopted for transforming commercial melamine sponge (MS) to highly porous carbon foam (CF) with robust elastic resilience, efficient electrothermal/photothermal conversions, and super-amphiphilicity. It is a novel proposal for CF to take the dual role of the elastic supporting framework and 3D energy conversion/transmission network without any functional fillers. The composite foam cPCL@CF incorporates the CF skeleton with in situ crosslinked polycaprolactone (PCL) layers, which exhibits high conductivity (≈140 S m-1 ) and excellent light absorption (≈97.7%) in the range of 250-2500 nm. By triggering the crystalline transition of PCL, the composite foam displays sensitive electro- and photo-induced shape memory effect (SME) with outstanding shape fixation ratio (Rf ) and recovery ratio (Rr ). Thanks to the super-amphiphilicity and high electrical conductivity, the cPCL@CF composite foam can give rapid and distinguishable electric signals upon tiny drips of salt solutions or lithium-ion battery (LIB) electrolytes, making it a new type of sensor for detecting electrolyte leakage.

2.
Macromol Rapid Commun ; 43(9): e2100826, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257427

RESUMO

Metacomposites have attracted widespread attention due to their unique negative electromagnetic properties and stupendous applications. Although there are systems that realize metamaterial properties in low radio frequency bands, the research on the construction of polymer matrix metacomposites with negative performance in the pivotal GHz band is still undiscovered. Herein, carbon nanofiber/conductive polymer metacomposites with 3D overlapping network structures are innovatively constructed to achieve negative permittivity characteristics in the radarwave frequency range, and convenient methods for further adjusting the electromagnetic parameters is also proposed. The results show that the negative permittivity of CNFs/PANI metacomposites can be conveniently altered via adjusting PANI content. Furthermore, electromagnetic shielding has also been fully discussed as one of the most valuable applications of the metacomposites. The SET of CNFs/PANI-70 has an average value of 70 dB at 4-18 GHz and can reach a maximum of 80 dB at 4 GHz, which far exceeds the current commercial electromagnetic shielding standards. This work greatly broadens the promising application of metacomposites for perfect electromagnetic shielding, novel capacitance, and frequency selective surfaces.

3.
ACS Appl Mater Interfaces ; 16(37): 49687-49700, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231313

RESUMO

The optimization of electromagnetic microwave absorbing (EMA) materials for radar stealth has been a continuous endeavor. However, meeting the defense requirements across multiple-frequency bands in increasingly complex and variable environments remains challenging. Drawing inspiration from the cytoskeleton-organelle structure, we designed and prepared a hierarchical MXene/NiFe2O4/calcined melamine foam (MNC) composite. The composite exhibits efficient and adjustable microwave absorption, infrared stealth, and solar absorption performance through the synergistic interaction of the components and the spatial effect of its novel microstructure. The composite achieves a minimum reflection loss of -58.57 dB and an effective absorption bandwidth (EAB) of 7.00 GHz, both of which can vary with the thickness. MNC also offers stable infrared stealth performance for heat sources ranging from 37 to 300 °C and high solar absorptivity up to 96.2%, promoting ambient-temperature-adaptive infrared stealth through electricity-sunlight cooperative regulation. With exceptional environmental adaptability characteristics such as photothermal conversion, lightness, elasticity, and hydrophobicity, the MNC composite holds promise as a multispectrum defense material for radar, infrared, and visible light for various forms of equipment, clothing, and wearables in harsh conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA