Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Hepatology ; 79(5): 1075-1087, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976411

RESUMO

BACKGROUND AND AIMS: Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS: With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS: In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS: This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics.


Assuntos
Falência Hepática Aguda , Transplante de Fígado , Criança , Humanos , Recidiva Local de Neoplasia , Falência Hepática Aguda/diagnóstico , Biomarcadores , Transplante de Fígado/efeitos adversos , Europa (Continente)
2.
Ann Neurol ; 93(2): 330-335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333996

RESUMO

Infantile striatonigral degeneration is caused by a homozygous variant of the nuclear-pore complex (NPC) gene NUP62, involved in nucleo-cytoplasmic trafficking. By querying sequencing-datasets of patients with dystonia and/or Leigh(-like) syndromes, we identified 3 unrelated individuals with biallelic variants in NUP54. All variants clustered in the C-terminal protein region that interacts with NUP62. Associated phenotypes were similar to those of NUP62-related disease, including early-onset dystonia with dysphagia, choreoathetosis, and T2-hyperintense lesions in striatum. In silico and protein-biochemical studies gave further evidence for the argument that the variants were pathogenic. We expand the spectrum of NPC component-associated dystonic conditions with localized basal-ganglia abnormalities. ANN NEUROL 2023;93:330-335.


Assuntos
Distonia , Distúrbios Distônicos , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Corpo Estriado , Distonia/genética , Distúrbios Distônicos/genética , Neostriado , Complexo de Proteínas Formadoras de Poros Nucleares/genética
3.
J Med Genet ; 60(10): 1006-1015, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37055166

RESUMO

BACKGROUND: Enoyl-CoA hydratase short-chain 1 (ECHS1) is an enzyme involved in the metabolism of branched chain amino acids and fatty acids. Mutations in the ECHS1 gene lead to mitochondrial short-chain enoyl-CoA hydratase 1 deficiency, resulting in the accumulation of intermediates of valine. This is one of the most common causative genes in mitochondrial diseases. While genetic analysis studies have diagnosed numerous cases with ECHS1 variants, the increasing number of variants of uncertain significance (VUS) in genetic diagnosis is a major problem. METHODS: Here, we constructed an assay system to verify VUS function for ECHS1 gene. A high-throughput assay using ECHS1 knockout cells was performed to index these phenotypes by expressing cDNAs containing VUS. In parallel with the VUS validation system, a genetic analysis of samples from patients with mitochondrial disease was performed. The effect on gene expression in cases was verified by RNA-seq and proteome analysis. RESULTS: The functional validation of VUS identified novel variants causing loss of ECHS1 function. The VUS validation system also revealed the effect of the VUS in the compound heterozygous state and provided a new methodology for variant interpretation. Moreover, we performed multiomics analysis and identified a synonymous substitution p.P163= that results in splicing abnormality. The multiomics analysis complemented the diagnosis of some cases that could not be diagnosed by the VUS validation system. CONCLUSIONS: In summary, this study uncovered new ECHS1 cases based on VUS validation and omics analysis; these analyses are applicable to the functional evaluation of other genes associated with mitochondrial disease.


Assuntos
Doenças Mitocondriais , Humanos , Fenótipo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação/genética , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Testes Genéticos
4.
J Med Genet ; 59(4): 351-357, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811136

RESUMO

BACKGROUND: Progressive cavitating leukoencephalopathy (PCL) is thought to result from mutations in nuclear genes affecting mitochondrial function and energy metabolism. To date, mutations in two subunits of complex I, NDUFS1 and NDUFV1, have been reported to be related to PCL. METHODS: Patients underwent clinical examinations, brain MRI, skin biopsy and muscle biopsy. Whole-genome or whole-exome sequencing was performed on the index patients from two unrelated families with PCL. The effects of the mutations were examined through complementation of the NDUFV2 mutation by cDNA expression. RESULTS: The common clinical features of the patients in this study were recurring episodes of acute or subacute developmental regression that appeared in the first years of life, followed by gradual remissions and prolonged periods of stability. MRI showed leukoencephalopathy with multiple cavities. Three novel NDUFV2 missense mutations were identified in these families. Complex I deficiency was confirmed in affected individuals' fibroblasts and a muscle biopsy. Functional and structural analyses revealed that these mutations affect the structural stability and function of the NDUFV2 protein, indicating that defective NDUFV2 function is responsible for the phenotypes in these individuals. CONCLUSIONS: Here, we report the clinical presentations, neuroimaging and molecular and functional analyses of novel mutations in NDUFV2 in two sibling pairs of two Chinese families presenting with PCL. We hereby expand the knowledge on the clinical phenotypes associated with mutations in NDUFV2 and the genotypes causative for PCL.


Assuntos
Leucoencefalopatias , Doenças Mitocondriais , NADH Desidrogenase , Exoma , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Doenças Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Sequenciamento do Exoma
6.
J Inherit Metab Dis ; 45(6): 1143-1150, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053827

RESUMO

Pathogenic mitochondrial DNA heteroplasmy has mainly been assessed with bulk sequencing in individuals with mitochondrial disease. However, the distribution of heteroplasmy at the single-cell level in skin fibroblasts obtained from individuals, together with detailed clinical and biochemical information, remains to be investigated. We used the mitochondrial DNA single-cell assay for the transposase-accessible chromatin sequencing method. Skin fibroblasts were obtained from six individuals with mitochondrial disease and pathogenic m.3243A>G variants of differing severity. Different distributions of heteroplasmy at the single-cell level were identified in skin fibroblasts from all six individuals. Four individuals with different outcomes showed similar averaged heteroplasmy rates with normal mitochondrial respiratory chain enzyme activity, while the distribution of single-cell heteroplasmy patterns differed among the individuals. This study showed different heteroplasmy distribution patterns at the single-cell level in individuals with the m.3243A>G variant, who had a similar averaged heteroplasmy rates with normal mitochondrial respiratory chain enzyme activity. Whether such different heteroplasmy distribution patterns explain the different clinical outcomes should be assessed further in future studies. Measuring heteroplasmy of pathogenic mitochondrial DNA variants at the single-cell level could be important in individuals with mitochondrial disease.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Heteroplasmia , Doenças Mitocondriais/genética , Mitocôndrias/genética
7.
Hum Mutat ; 42(11): 1422-1428, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405929

RESUMO

Isolated complex I deficiency is the most common cause of pediatric mitochondrial disease. Exome sequencing (ES) has revealed many complex I causative genes. However, there are limitations associated with identifying causative genes by ES analysis. In this study, we performed multiomics analysis to reveal the causal variants. We here report two cases with mitochondrial complex I deficiency. In both cases, ES identified a novel c.580G>A (p.Glu194Lys) variant in NDUFV2. One case additionally harbored c.427C>T (p.Arg143*), but no other variants were observed in the other case. RNA sequencing showed aberrant exon splicing of NDUFV2 in the unsolved case. Genome sequencing revealed a novel heterozygous deletion in NDUFV2, which included one exon and resulted in exon skipping. Detailed examination of the breakpoint revealed that an Alu insertion-mediated rearrangement caused the deletion. Our report reveals that combined use of transcriptome sequencing and GS was effective for diagnosing cases that were unresolved by ES.


Assuntos
Elementos Alu , Complexo I de Transporte de Elétrons/deficiência , Deleção de Genes , Genoma Humano , Mutação INDEL , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Análise de Sequência de RNA/métodos , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Lactente , Masculino , Doenças Mitocondriais/diagnóstico , Linhagem
8.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057030

RESUMO

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

9.
Clin Genet ; 98(2): 155-165, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385911

RESUMO

Mitochondrial complex I deficiency is caused by pathogenic variants in mitochondrial and nuclear genes associated with complex I structure and assembly. We report the case of a patient with NDUFA8-related mitochondrial disease. The patient presented with developmental delay, microcephaly, and epilepsy. His fibroblasts showed apparent biochemical defects in mitochondrial complex I. Whole-exome sequencing revealed that the patient carried a homozygous variant in NDUFA8. His fibroblasts showed a reduction in the protein expression level of not only NDUFA8, but also the other complex I subunits, consistent with assembly defects. The enzyme activity of complex I and oxygen consumption rate were restored by reintroducing wild-typeNDUFA8 cDNA into patient fibroblasts. The functional properties of the variant in NDUFA8 were also investigated using NDUFA8 knockout cells expressing wild-type or mutated NDUFA8 cDNA. These experiments further supported the pathogenicity of the variant in complex I assembly. This is the first report describing that the loss of NDUFA8, which has not previously been associated with mitochondrial disease, causes severe defect in the assembly of mitochondrial complex I, leading to progressive neurological and developmental abnormalities.


Assuntos
Deficiências do Desenvolvimento/genética , Complexo I de Transporte de Elétrons/deficiência , Microcefalia/genética , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/fisiopatologia , Complexo I de Transporte de Elétrons/genética , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/fisiopatologia , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/fisiopatologia , Adulto Jovem
10.
J Inherit Metab Dis ; 43(4): 819-826, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31967322

RESUMO

Leigh syndrome is a major phenotype of mitochondrial diseases in children. With new therapeutic options being proposed, assessing the mortality and clinical condition of Leigh syndrome patients is crucial for evaluating therapeutics. As data are scarce in Japan, we analysed the mortality rate and clinical condition of Japanese Leigh syndrome patients that we diagnosed since 2007. Data from 166 Japanese patients diagnosed with Leigh syndrome from 2007 to 2017 were reviewed. Patients' present status, method of ventilation and feeding, and degree of disability as of April 2018 was analysed. Overall, 124 (74.7%) were living, 40 (24.1%) were deceased, and 2 (1.2%) were lost to follow-up. Median age of living patients was 8 years (1-39 years). Median length of disease course was 91 months for living patients and 23.5 months for deceased patients. Nearly 90% of deaths occurred by age 6. Mortality rate of patients with onset before 6 months of age was significantly higher than that of onset after 6 months. All patients with neonatal onset were either deceased or bedridden. MT-ATP6 deficiency caused by m.8993T>G mutation and MT-ND5 deficiency induced a severe form of Leigh syndrome. Patients with NDUFAF6, ECHS1, and SURF1 deficiency had relatively mild symptoms and better survival. The impact of onset age on prognosis varied across the genetic diagnoses. The clinical condition of many patients was poor; however, few did not require mechanical ventilation or tube-feeding and were not physically dependent. Early disease onset and genetic diagnosis may have prognostic value.


Assuntos
Doença de Leigh/genética , Doença de Leigh/mortalidade , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , DNA/genética , DNA Mitocondrial/genética , Feminino , Humanos , Lactente , Japão/epidemiologia , Estimativa de Kaplan-Meier , Doença de Leigh/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Mutação/genética , Fenótipo , Taxa de Sobrevida , Adulto Jovem
11.
Neurogenetics ; 20(1): 9-25, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30607703

RESUMO

Pentatricopeptide repeat domain proteins are a large family of RNA-binding proteins involved in mitochondrial RNA editing, stability, and translation. Mitochondrial translation machinery defects are an expanding group of genetic diseases in humans. We describe a patient who presented with low birth weight, mental retardation, and optic atrophy. Brain MRI showed abnormal bilateral signals at the basal ganglia and brainstem, and the patient was diagnosed as Leigh syndrome. Exome sequencing revealed two potentially loss-of-function variants [c.415-2A>G, and c.1747_1748insCT (p.Phe583Serfs*3)] in PTCD3 (also known as MRPS39). PTCD3, a member of the pentatricopeptide repeat domain protein family, is a component of the small mitoribosomal subunit. The patient had marked decreases in mitochondrial complex I and IV levels and activities, oxygen consumption and ATP biosynthesis, and generalized mitochondrial translation defects in fibroblasts. Quantitative proteomic analysis revealed decreased levels of the small mitoribosomal subunits. Complementation experiments rescued oxidative phosphorylation complex I and IV levels and activities, ATP biosynthesis, and MT-RNR1 rRNA transcript level, providing functional validation of the pathogenicity of identified variants. This is the first report of an association of PTCD3 mutations with Leigh syndrome along with combined oxidative phosphorylation deficiencies caused by defects in the mitochondrial translation machinery.


Assuntos
Proteínas de Arabidopsis/genética , Doença de Leigh/genética , Mutação/genética , Fosforilação Oxidativa , Proteínas de Ligação a RNA/genética , Feminino , Humanos , Mitocôndrias/genética , Linhagem
12.
Genet Med ; 21(1): 44-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29543226

RESUMO

PURPOSE: Plasma globotriaosylsphingosine (lyso-Gb3) is a promising secondary screening biomarker for Fabry disease. Here, we examined its applicability as a primary screening biomarker for classic and late-onset Fabry disease in males and females. METHODS: Between 1 July 2014 and 31 December 2015, we screened 2,359 patients (1,324 males) referred from 168 Japanese specialty clinics (cardiology, nephrology, neurology, and pediatrics), based on clinical symptoms suggestive of Fabry disease. We used the plasma lyso-Gb3 concentration, α-galactosidase A (α-Gal A) activity, and analysis of the α-Gal A gene (GLA) for primary and secondary screens, respectively. RESULTS: Of 8 males with elevated lyso-Gb3 levels (≥2.0 ng ml-1) and low α-Gal A activity (≤4.0 nmol h-1 ml-1), 7 presented a GLA mutation (2 classic and 5 late-onset). Of 14 females with elevated lyso-Gb3, 7 displayed low α-Gal A activity (5 with GLA mutations; 4 classic and 1 late-onset) and 7 exhibited normal α-Gal A activity (1 with a classic GLA mutation and 3 with genetic variants of uncertain significance). CONCLUSION: Plasma lyso-Gb3 is a potential primary screening biomarker for classic and late-onset Fabry disease probands.


Assuntos
Biomarcadores/sangue , Doença de Fabry/sangue , Testes Genéticos , Glicolipídeos/sangue , Esfingolipídeos/sangue , Idoso , Doença de Fabry/genética , Doença de Fabry/patologia , Feminino , Galactosidases/sangue , Galactosidases/genética , Glicolipídeos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Seleção de Pacientes , Fatores de Risco , Esfingolipídeos/genética
14.
Genet Med ; 21(2): 512-515, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190610

RESUMO

In the above article, we noticed that one female patient in the positive group (plasma lyso-Gb3 7.6 ng/ml, α-galactosidase A activity 4.9 nmol/h/ml) who presented at the neurology clinic was already diagnosed with Fabry disease before the current study. We excluded patients with a confirmed diagnosis of Fabry disease and those with relatives known to have Fabry disease. To accurately describe the information in the current study, we must exclude this patient from the analysis. We have accurately revised this information as follows.

16.
J Hum Genet ; 64(2): 113-125, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30459337

RESUMO

Mitochondrial diseases are inherited metabolic diseases based on disorders of energy production. The expansion of exome analyses has led to the discovery of many pathogenic nuclear genes associated with these diseases, and research into the pathogenesis of metabolic diseases has progressed. In cases of Leigh syndrome, it is desirable to perform both biochemical and genetic analyses, and pathogenic gene mutations have been identified in over half of the cases analyzed this way. Tandem mass screening and organic acid analyses of urine can sometimes provide important information that leads to the identification of pathogenic genes. Our comprehensive gene analyses have led to the discovery of several novel genes for mitochondrial diseases. Indeed, we reported that GTPBP3 and QRSL1 are involved in mitochondrial DNA maturation. In 2017, as a result of international collaboration, we also identified that mutations in ATAD3 and C1QBP cause mitochondrial disease. Given the varied pathogeneses, treatments for mitochondrial diseases should be specifically tailored to the mutated gene. Clinical trials of sodium pyruvate, 5-aminolevulinic acid with sodium ferrous citrate, and taurine as a treatment for mitochondrial disease have begun in Japan. Given that some mitochondrial diseases may respond well to certain treatments if the pathogenic gene can be identified, an early genetic diagnosis is crucial. Additionally, in Japan, prenatal diagnoses for mitochondrial diseases caused by nuclear genes have been achieved for genes shown to be pathogenic. Treatment and management approaches, including prenatal diagnoses, specifically tailored to the various phenotypes and pathologies of mitochondrial diseases are expected to become increasingly available.


Assuntos
Programas de Rastreamento , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Proteínas Mitocondriais/genética , Mutação , Humanos , Doenças Mitocondriais/genética , Prognóstico
17.
J Pediatr Hematol Oncol ; 41(5): e325-e328, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30130274

RESUMO

Therapeutic phlebotomy is recommended for treating hereditary hemochromatosis. However, the procedure and its efficacy for children remain unclear. We describe a young female patient with ferroportin disease, which was confirmed from excess iron deposition within hepatocytes and by identifying a heterozygous variant p.Cys326Phe in SLC40A1. She had been followed without phlebotomy. Liver histology at age 13 years revealed iron deposition progression. Phlebotomy was initiated and her iron markers and imaging findings improved without severe adverse effects. Therapeutic phlebotomy for children is effective and well-tolerated and should be considered as early as possible after a hemochromatosis diagnosis.


Assuntos
Proteínas de Transporte de Cátions/deficiência , Hemocromatose/diagnóstico , Hemocromatose/terapia , Mutação , Flebotomia/métodos , Adolescente , Proteínas de Transporte de Cátions/genética , Feminino , Hemocromatose/genética , Heterozigoto , Humanos , Resultado do Tratamento
18.
PLoS Genet ; 12(1): e1005679, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26741492

RESUMO

Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.


Assuntos
Exoma/genética , Heterogeneidade Genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , DNA Mitocondrial/genética , Feminino , Fibroblastos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Masculino , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA