Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Brain Behav Immun ; 119: 637-647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663773

RESUMO

Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia, more than of other cell types, are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD.


Assuntos
Doença de Alzheimer , Córtex Cerebral , Obesidade , Animais , Obesidade/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Atrofia , Dieta Hiperlipídica/efeitos adversos , Idoso , Adiposidade , Transcriptoma
2.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050683

RESUMO

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Idoso , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Metaboloma , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
3.
J Child Psychol Psychiatry ; 64(3): 408-416, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36162806

RESUMO

BACKGROUND: Specific pathways of intergenerational transmission of behavioral traits remain unclear. Here, we aim to investigate how parental genetics influence offspring cognition, educational attainment, and psychopathology in youth. METHODS: Participants for the discovery sample were 2,189 offspring (aged 6-14 years), 1898 mothers and 1,017 fathers who underwent genotyping, psychiatric, and cognitive assessments. We calculated polygenic scores (PGS) for cognition, educational attainment, attention-deficit hyperactivity disorder (ADHD), and schizophrenia for the trios. Phenotypes studied included educational and cognitive measures, ADHD and psychotic symptoms. We used a stepwise approach and multiple mediation models to analyze the effect of parental PGS on offspring traits via offspring PGS and parental phenotype. Significant results were replicated in a sample of 1,029 adolescents, 363 mothers, and 307 fathers. RESULTS: Maternal and paternal PGS for cognition influenced offspring general intelligence and executive function via offspring PGS (genetic pathway) and parental education (phenotypic pathway). Similar results were found for parental PGS for educational attainment and offspring reading and writing skills. These pathways fully explained associations between parental PGS and offspring phenotypes, without residual direct association. Associations with maternal, but not paternal, PGS were replicated. No associations were found between parental PGS for psychopathology and offspring specific symptoms. CONCLUSIONS: Our findings indicate that parental genetics influences offspring cognition and educational attainment by genetic and phenotypic pathways, suggesting the expression of parental phenotypes partially explain the association between parental genetic risk and offspring outcomes. Multiple mediations might represent an effective approach to disentangle distinct pathways for intergenerational transmission of behavioral traits.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Pais , Feminino , Humanos , Cognição , Escolaridade , Mães , Transtorno do Deficit de Atenção com Hiperatividade/genética , Fenótipo
4.
Eur Heart J ; 43(40): 4148-4157, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36239217

RESUMO

AIMS: This study aimed to examine the association of premature menopause and age at menopause with the risk of heart failure (HF) and atrial fibrillation (AF). METHODS AND RESULTS: A total of 1 401 175 postmenopausal women, who had undergone health examination provided by the Korean National Health Insurance Service, were included, and their reproductive histories were collected. Multivariable Cox proportional hazard models were performed to determine the hazard ratios (HRs) and 95% confidence intervals (CIs) of incident HF and AF, according to the history of premature menopause and age at menopause. At a mean follow-up of 9.1 years, there were 42 699 (3.0%) and 44 834 (3.2%) new cases of HF and AF, respectively. Women with history of premature menopause had an increased risk of HF (HR: 1.33, 95% CI: 1.26-1.40) and AF (HR: 1.09, 95% CI: 1.02-1.16), compared to women without the history. Compared with women aged ≥50 years at menopause, those aged 45-49, 40-44, and <40 years at menopause showed a significantly increased trend in HRs for the incident risk of both HF and AF (P for trend <0.001). The robustness of the results of a series of sensitivity analyses further strengthens the main findings. CONCLUSION: Our findings suggest that postmenopausal women with a history of premature menopause or early menopausal age may have an increased risk of HF and AF. These reproductive factors need to be considered for preventing the future risk of HF and AF.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Menopausa Precoce , Humanos , Feminino , Estudos de Coortes , Fatores de Risco , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/diagnóstico , Menopausa , Incidência
5.
Int J Obes (Lond) ; 46(1): 235-237, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480103

RESUMO

The genetic architecture of testosterone is highly distinct between sexes. Moreover, obesity is associated with higher testosterone in females but lower testosterone in males. Here, we ask whether male-specific testosterone variants are associated with a male pattern of obesity and type 2 diabetes (T2D) in females, and vice versa. In the UK Biobank, we conducted sex-specific genome-wide association studies and computed polygenic scores for total (PGSTT) and bioavailable testosterone (PGSBT). We tested sex-congruent and sex-incongruent associations between sex-specific PGSTs and metabolic traits, as well as T2D diagnosis. Female-specific PGSBT was associated with an elevated cardiometabolic risk and probability of T2D, in both sexes. Male-specific PGSTT was associated with traits conferring a lower cardiometabolic risk and probability of T2D, in both sexes. We demonstrate the value in considering polygenic testosterone as sex-related continuous traits, in each sex.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Síndrome Metabólica/complicações , Diferenciação Sexual/genética , Testosterona/metabolismo , Adulto , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Masculino , Síndrome Metabólica/classificação , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Testosterona/análise
6.
Mol Psychiatry ; 26(8): 3795-3805, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31900429

RESUMO

Visceral adiposity has been associated with altered microstructural properties of white matter in adolescents. Previous evidence suggests that circulating phospholipid PC(16:0/2:0) may mediate this association. To investigate the underlying biology, we performed a genome-wide association study (GWAS) of the shared variance of visceral fat, PC(16:0/2:0), and white matter microstructure in 872 adolescents from the Saguenay Youth Study. We further studied the metabolomic profile of the GWAS-lead variant in 931 adolescents. Visceral fat and white matter microstructure were assessed with magnetic resonance imaging. Circulating metabolites were quantified with serum lipidomics and metabolomics. We identified a genome-wide significant association near DHCR24 (Seladin-1) encoding a cholesterol-synthesizing enzyme (rs588709, p = 3.6 × 10-8); rs588709 was also associated nominally with each of the three traits (white matter microstructure: p = 2.1 × 10-6, PC(16:0/2:0): p = 0.005, visceral fat: p = 0.010). We found that the metabolic profile associated with rs588709 resembled that of a TM6SF2 variant impacting very low-density lipoprotein (VLDL) secretion and was only partially similar to that of a HMGCR variant. This suggests that the effect of rs588709 on VLDL lipids may arise due to altered phospholipid rather than cholesterol metabolism. The rs588709 was also nominally associated with circulating concentrations of omega-3 fatty acids in interaction with visceral fat and PC(16:0/2:0), and these fatty acid measures showed robust associations with white matter microstructure. Overall, the present study provides evidence that the DHCR24 locus may link peripheral metabolism to brain microstructure, an association with implications for cognitive impairment.


Assuntos
Metabolismo dos Lipídeos , Proteínas do Tecido Nervoso , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Substância Branca , Adolescente , Encéfalo/diagnóstico por imagem , Estudo de Associação Genômica Ampla , Humanos , Metabolismo dos Lipídeos/genética , Imageamento por Ressonância Magnética , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Substância Branca/diagnóstico por imagem
7.
Mol Psychiatry ; 26(8): 3884-3895, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31811260

RESUMO

DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.


Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla , Humanos
8.
Cereb Cortex ; 30(2): 575-586, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31240317

RESUMO

Exposures to life stressors accumulate across the lifespan, with possible impact on brain health. Little is known, however, about the mechanisms mediating age-related changes in brain structure. We use a lifespan sample of participants (n = 21 251; 4-97 years) to investigate the relationship between the thickness of cerebral cortex and the expression of the glucocorticoid- and the mineralocorticoid-receptor genes (NR3C1 and NR3C2, respectively), obtained from the Allen Human Brain Atlas. In all participants, cortical thickness correlated negatively with the expression of both NR3C1 and NR3C2 across 34 cortical regions. The magnitude of this correlation varied across the lifespan. From childhood through early adulthood, the profile similarity (between NR3C1/NR3C2 expression and thickness) increased with age. Conversely, both profile similarities decreased with age in late life. These variations do not reflect age-related changes in NR3C1 and NR3C2 expression, as observed in 5 databases of gene expression in the human cerebral cortex (502 donors). Based on the co-expression of NR3C1 (and NR3C2) with genes specific to neural cell types, we determine the potential involvement of microglia, astrocytes, and CA1 pyramidal cells in mediating the relationship between corticosteroid exposure and cortical thickness. Therefore, corticosteroids may influence brain structure to a variable degree throughout life.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Cereb Cortex ; 30(7): 4121-4139, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198502

RESUMO

We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade-albeit in a very limited manner-to behaviors as complex as the choice of one's occupation.


Assuntos
Aptidão/fisiologia , Escolha da Profissão , Córtex Cerebral/crescimento & desenvolvimento , Percepção de Forma/genética , Córtex Visual/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Espessura Cortical do Cérebro , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Análise de Componente Principal , Proteínas de Ligação a RNA/genética , Transcriptoma , Adulto Jovem , Proteínas rho de Ligação ao GTP/genética , Proteínas tau/genética
10.
Neuroimage ; 218: 116968, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450248

RESUMO

Neurobiology underlying inter-regional variations - across the human cerebral cortex - in measures derived with multi-modal magnetic resonance imaging (MRI) is poorly understood. Here, we characterize inter-regional variations in a large number of such measures, including T1 and T2 relaxation times, myelin water fraction (MWF), T1w/T2w ratio, mean diffusivity (MD), fractional anisotropy (FA), magnetization transfer ratio (MTR) and cortical thickness. We then employ a virtual-histology approach and relate these inter-regional profiles to those in cell-specific gene expression. Virtual histology revealed that most MRI-derived measures, including T1, T2 relaxation time, MWF, T1w/T2w ratio, MTR, FA and cortical thickness, are associated with expression profiles of genes specific to CA1 pyramidal cells; these genes are enriched in biological processes related to dendritic arborisation. In addition, T2 relaxation time, MWF and T1w/T2w ratio are associated with oligodendrocyte-specific gene-expression profiles, supporting their use as measures sensitive to intra-cortical myelin. MWF contributes more variance than T1w/T2w ratio to the mean oligodendrocyte expression profile, suggesting greater sensitivity to myelin. These cell-specific MRI associations may help provide a framework for determining which MRI sequences to acquire in studies with specific neurobiological hypotheses.


Assuntos
Córtex Cerebral/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Imagem de Tensor de Difusão , Humanos , Longevidade , Masculino , Transcriptoma , Adulto Jovem
11.
Mol Psychiatry ; 24(12): 1920-1932, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29988085

RESUMO

Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10-6) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.


Assuntos
Envelhecimento/genética , Cardiopatias/genética , Nutrientes , Idoso , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Estudos de Coortes , Ingestão de Energia/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Loci Gênicos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Cardiopatias/epidemiologia , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores do Ácido Retinoico/genética , População Branca/genética
12.
Int J Obes (Lond) ; 43(6): 1223-1230, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30206338

RESUMO

OBJECTIVE: Life-long maintenance of brain health is important for the prevention of cognitive impairment in older age. Low-grade peripheral inflammation associated with excess visceral fat (VF) may influence brain structure and function. Here we examined (i) if this type of inflammation is associated with altered white-matter (WM) microstructure and lower cognitive functioning in adolescents, and (ii) if recently identified circulating glycerophosphocholines (GPCs) can index this type of inflammation and associated variations in WM microstructure and cognitive functioning. SUBJECTS: We studied a community-based sample of 872 adolescents (12-18 years, 48% males) in whom we assessed VF and WM microstructure with magnetic resonance imaging, processing speed with cognitive testing, serum C-reactive protein (CRP, a common marker of peripheral inflammation) with a high-sensitivity assay, and serum levels of a panel of 64 GPCs with advanced mass spectrometry. RESULTS: VF was associated with CRP, and CRP in turn was associated with "altered" WM microstructure and lower processing speed (all p < 0.003). Further, "altered" WM microstructure was associated with lower processing speed (p < 0.0001). Of all 64 tested GPCs, 4 were associated with both VF and CRP (at Bonferroni corrected p < 0.0004). One of them, PC16:0/2:0, was also associated with WM microstructure (p < 0.0001) and processing speed (p = 0.0003), and mediated the directed associations between VF and both WM microstructure (p < 0.0001) and processing speed (p = 0.02). As a mediator, PC16:0/2:0 explained 21% of shared variance between VF and WM microstructure, and 22% of shared variance between VF and processing speed. Similar associations were observed in an auxiliary study of 80 middle-aged adults. CONCLUSIONS: Our results show that VF-related peripheral inflammation is associated with "altered" WM microstructure and lower cognitive functioning already in adolescents, and a specific circulating GPC may be a new molecule indexing this VF-related peripheral inflammation and its influences on brain structure and function.


Assuntos
Encéfalo/patologia , Glicerofosfatos/sangue , Inflamação/fisiopatologia , Gordura Intra-Abdominal/patologia , Obesidade Infantil/fisiopatologia , Adiposidade , Adolescente , Encéfalo/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Inflamação/etiologia , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Obesidade Infantil/complicações , Obesidade Infantil/diagnóstico por imagem
13.
Cereb Cortex ; 28(9): 3267-3277, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968835

RESUMO

Neurobiological underpinnings of cortical thickness in the human brain are largely unknown. Here we use cell-type-specific gene markers to evaluate the contribution of 9 neural cell-types in explaining inter-regional variations in cortical thickness and age-related cortical thinning in the adolescent brain. Gene-expression data were derived from the Allen Human Brain Atlas (and validated using the BrainSpan Atlas). Values of cortical thickness/thinning were obtained with magnetic resonance imaging in a sample of 987 adolescents. We show that inter-regional profiles in cortical thickness relate to those in the expression of genes marking CA1 pyramidal cells, astrocytes, and microglia; taken together, the 3 cell types explain 70% of regional variation in cortical thickness. We also show that inter-regional profiles in cortical thinning relate to those in the expression of genes marking CA1 and S1 pyramidal cells, astrocytes and microglia. Using Gene Ontology analysis, we demonstrate that the difference in the contribution of CA1 and S1 pyramidal cells may relate to biological processes such as neuronal plasticity and potassium channel activity, respectively. This "virtual histology" approach (scripts provided) can be used to examine neurobiological underpinnings of cortical profiles associated with development, aging, and various disorders.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Neuroglia/citologia , Neurônios/citologia , Adolescente , Feminino , Humanos , Masculino , Tamanho do Órgão , Transcriptoma
14.
Circulation ; 134(21): 1629-1636, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27756781

RESUMO

BACKGROUND: Glycerophosphocholine (GPC) metabolites modulate atherosclerosis and thus risk for cardiovascular disease (CVD). Preclinical CVD may start during adolescence. Here, we used targeted serum lipidomics to identify a new panel of GPCs, and tested whether any of these GPCs are associated, in adolescence, with classical risk factors of CVD, namely excess visceral fat (VF), elevated blood pressure, insulin resistance, and atherogenic dyslipidemia. METHODS: We studied a population-based sample of 990 adolescents (12-18 years, 48% male), as part of the Saguenay Youth Study. Using liquid chromatography-electrospray ionization-mass spectrometry, we identified 69 serum GPCs within the 450 to 680 m/z range. We measured VF with MRI. RESULTS: We identified several novel GPCs that were associated with multiple CVD risk factors. Most significantly, PC16:0/2:0 was negatively associated with VF (P=1.4×10-19), blood pressure (P=7.7×10-5), and fasting triacylglycerols (P=9.0×10-5), and PC14:1/0:0 was positively associated with VF (P=3.0×10-7), fasting insulin (P=5.4×10-32), and triacylglycerols (P=1.4×10-29). The Sobel test of mediation revealed that both GPCs mediated their respective relations between VF (as a potential primary exposure) and CVD risk factors (as outcomes, P values<1.3×10-3). Furthermore, a GPC shown recently to predict incident coronary heart disease in older adults, PC18:2/0:0, was associated with several CVD risk factors in adolescents; these associations were less strong than those with the newly identified GPCs. CONCLUSIONS: We identified novel GPCs strongly associated with multiple CVD risk factors in adolescents. These GPCs may be sensitive indicators of obesity-related risk for CVD outcomes in adults, and may improve biological understanding of CVD risk.


Assuntos
Doenças Cardiovasculares/etiologia , Glicerofosfatos/efeitos adversos , Adolescente , Doenças Cardiovasculares/sangue , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Fatores de Risco
15.
Hum Mol Genet ; 24(20): 5733-45, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220975

RESUMO

DNA methylation may contribute to the etiology of complex genetic disorders through its impact on genome integrity and gene expression; it is modulated by DNA-sequence variants, named methylation quantitative trait loci (meQTLs). Most meQTLs influence methylation of a few CpG dinucleotides within short genomic regions (<3 kb). Here, we identified a layered genetic control of DNA methylation at numerous CpGs across a long 300 kb genomic region. This control involved a single long-range meQTL and multiple local meQTLs. The long-range meQTL explained up to 75% of variance in methylation of CpGs located over extended areas of the 300 kb region. The meQTL was identified in four samples (P = 2.8 × 10(-17), 3.1 × 10(-31), 4.0 × 10(-71) and 5.2 × 10(-199)), comprising a total of 2796 individuals. The long-range meQTL was strongly associated not only with DNA methylation but also with mRNA expression of several genes within the 300 kb region (P = 7.1 × 10(-18)-1.0 × 10(-123)). The associations of the meQTL with gene expression became attenuated when adjusted for DNA methylation (causal inference test: P = 2.4 × 10(-13)-7.1 × 10(-20)), indicating coordinated regulation of DNA methylation and gene expression. Further, the long-range meQTL was found to be in linkage disequilibrium with the most replicated locus of multiple sclerosis, a disease affecting primarily the brain white matter. In middle-aged adults free of the disease, we observed that the risk allele was associated with subtle structural properties of the brain white matter found in multiple sclerosis (P = 0.02). In summary, we identified a long-range meQTL that controls methylation and expression of several genes and may be involved in increasing brain vulnerability to multiple sclerosis.


Assuntos
Ilhas de CpG , Metilação de DNA , Regulação da Expressão Gênica , Predisposição Genética para Doença , Esclerose Múltipla/genética , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Alelos , Cromossomos Humanos Par 6 , Feminino , Genômica , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade
16.
Cell Rep Med ; 5(5): 101529, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703765

RESUMO

The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.


Assuntos
Estudo de Associação Genômica Ampla , Cabeça , Neoplasias , Humanos , Cabeça/anatomia & histologia , Neoplasias/genética , Neoplasias/patologia , Feminino , Masculino , Polimorfismo de Nucleotídeo Único/genética , Variação Genética , Tamanho do Órgão/genética , Transdução de Sinais/genética , Adulto , Predisposição Genética para Doença
17.
Diabetes Care ; 46(12): 2267-2272, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824790

RESUMO

OBJECTIVE: To investigate the relationship between blood glycated hemoglobin (HbA1c) and cerebral cortical thickness (CT) and identify potential cellular mechanisms involved. RESEARCH DESIGN AND METHODS: A cohort of 30,579 adults age 45 to 81 (mean ± SD: 64 ± 7.5) years with available data on brain MRI and blood HbA1c levels was analyzed. The relationship between HbA1c and CT was probed using independent spatial profiles of cell-specific gene expression. Lastly, a genome-wide association study was conducted on the shared variance between HbA1c and CT. RESULTS: The HbA1c-CT association was noncontinuous, emerging negatively within the prediabetic range (39.6 mmol/mol). This association was strongest in brain regions with higher expression of genes specific to excitatory neurons and lower expression of genes specific to astrocytes and microglia. A significant locus implicated mitochondrial maintenance and ATP generation. CONCLUSIONS: Effective glycemia control at prediabetic levels is warranted to preserve brain health and prevent prediabetes-related neurobiologic perturbations.


Assuntos
Estado Pré-Diabético , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estado Pré-Diabético/genética , Hemoglobinas Glicadas , Glicemia/metabolismo , Estudo de Associação Genômica Ampla , Neurobiologia , Atrofia
18.
Dev Cogn Neurosci ; 60: 101232, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963244

RESUMO

Although many studies of the adolescent brain identified positive associations between cognitive abilities and cortical thickness, little is known about mechanisms underlying such brain-behavior relationships. With experience-induced plasticity playing an important role in shaping the cerebral cortex throughout life, it is likely that some of the inter-individual variations in cortical thickness could be explained by genetic variations in relevant molecular processes, as indexed by a polygenic score of neuronal plasticity (PGS-NP). Here, we studied associations between PGS-NP, cognitive abilities, and thickness of the cerebral cortex, estimated from magnetic resonance images, in the Saguenay Youth Study (SYS, 533 females, 496 males: age=15.0 ± 1.8 years of age; cross-sectional), and the IMAGEN Study (566 females, 556 males; between 14 and 19 years; longitudinal). Using Gene Ontology, we first identified 199 genes implicated in neuronal plasticity, which mapped to 155,600 single nucleotide polymorphisms (SNPs). Second, we estimated their effect sizes from an educational attainment meta-GWAS to build a PGS-NP. Third, we examined a possible moderating role of PGS-NP in the relationship between performance intelligence quotient (PIQ), and its subtests, and the thickness of 34 cortical regions. In SYS, we observed a significant interaction between PGS-NP and object assembly vis-à-vis thickness in male adolescents (p = 0.026). A median-split analysis showed that, in males with a 'high' PGS-NP, stronger associations between object assembly and thickness were found in regions with larger age-related changes in thickness (r = 0.55, p = 0.00075). Although the interaction between PIQ and PGS-NP was non-significant (p = 0.064), we performed a similar median-split analysis. Again, in the high PGS-NP males, positive associations between PIQ and thickness were observed in regions with larger age-related changes in thickness (r = 0.40, p = 0.018). In the IMAGEN cohort, we did not replicate the first set of results (interaction between PGS-NP and cognitive abilities via-a-vis cortical thickness) while we did observe the same relationship between the brain-behaviour relationship and (longitudinal) changes in cortical thickness (Matrix reasoning: r = 0.63, p = 6.5e-05). No statistically significant results were observed in female adolescents in either cohort. Overall, these cross-sectional and longitudinal results suggest that molecular mechanisms involved in neuronal plasticity may contribute to inter-individual variations of cortical thickness related to cognitive abilities during adolescence in a sex-specific manner.


Assuntos
Aptidão , Inteligência , Humanos , Masculino , Adolescente , Feminino , Inteligência/fisiologia , Estudos Transversais , Cognição/fisiologia , Córtex Cerebral , Imageamento por Ressonância Magnética , Plasticidade Neuronal/genética
19.
Nat Med ; 29(4): 950-962, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37069360

RESUMO

Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Humanos , Células Endoteliais/patologia , Estudo de Associação Genômica Ampla , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Imageamento por Ressonância Magnética/métodos , Genômica
20.
Commun Med (Lond) ; 2: 81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789567

RESUMO

Background: Visceral fat (VF) increases risk for cardiometabolic disease (CMD), the leading cause of morbidity and mortality. Variations in the circulating metabolome predict the risk for CMD but whether or not this is related to VF is unknown. Further, CMD is now also present in adolescents, and the relationships between VF, circulating metabolome, and CMD may vary between adolescents and adults. Methods: With an aim to add understanding to the metabolic variations in visceral obesity, we tested associations between VF, measured directly with magnetic resonance imaging, and 228 fasting serum metabolomic measures, quantified with nuclear magnetic resonance spectroscopy, in 507 adults (36-65 years) and 938 adolescents (12-18 years). We further utilized data from published studies to estimate similarities between VF and CMD-associated metabolic profiles. Results: Here we show that VF, independently of body mass index (BMI) or subcutaneous fat, is associated with triglyceride-rich lipoproteins, fatty acids, and inflammation in both adults and adolescents, whereas the associations with amino acids, glucose, and intermediary metabolites are significant in adults only. BMI-adjusted metabolomic profile of VF resembles those predicting type 2 diabetes in adults (R 2 = 0.88) and adolescents (R 2 = 0.70), and myocardial infarction in adults (R 2 = 0.59) and adolescents (R 2 = 0.40); this is not the case for ischemic stroke (adults: R 2 = 0.05, adolescents: R 2 = 0.08). Conclusions: Visceral adiposity is associated with metabolomic profiles predictive of type 2 diabetes and myocardial infarction even in normal-weight individuals and already in adolescence. Targeting factors contributing to the emergence and maintenance of these profiles might ameliorate their cumulative effects on cardiometabolic health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA