Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(14): E1321-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509267

RESUMO

Animals across various phyla exhibit odor-evoked innate attraction behavior that is developmentally programmed. The mechanism underlying such behavior remains unclear because the odorants that elicit robust attraction responses and the neuronal circuits that mediate this behavior have not been identified. Here, we describe a functionally segregated population of olfactory sensory neurons (OSNs) and projection neurons (PNs) in Drosophila melanogaster that are highly specific to ammonia and amines, which act as potent attractants. The OSNs express IR92a, a member of the chemosensory ionotropic receptor (IR) family and project to a pair of glomeruli in the antennal lobe, termed VM1. In vivo calcium-imaging experiments showed that the OSNs and PNs innervating VM1 were activated by ammonia and amines but not by nonamine odorants. Flies in which the IR92a(+) neurons or IR92a gene was inactivated had impaired amine-evoked physiological and behavioral responses. Tracing neuronal pathways to higher brain centers showed that VM1-PN axonal projections within the lateral horn are topographically segregated from those of V-PN and DC4-PN, which mediate innate avoidance behavior to carbon dioxide and acidity, respectively, suggesting that these sensory stimuli of opposing valence are represented in spatially distinct neuroanatomic loci within the lateral horn. These experiments identified the neurons and their cognate receptor for amine detection, and mapped amine attractive olfactory inputs to higher brain centers. This labeled-line mode of amine coding appears to be hardwired to attraction behavior.


Assuntos
Aminas/metabolismo , Amônia/metabolismo , Anopheles/fisiologia , Quimiotaxia/fisiologia , Drosophila/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Vias Aferentes , Análise de Variância , Animais , Animais Geneticamente Modificados , Imuno-Histoquímica , Receptores Ionotrópicos de Glutamato/metabolismo , Especificidade da Espécie
2.
Stem Cells Int ; 2016: 7849890, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880988

RESUMO

Glioblastoma remains the most common and devastating primary brain tumor despite maximal therapy with surgery, chemotherapy, and radiation. The glioma stem cell (GSC) subpopulation has been identified in glioblastoma and likely plays a key role in resistance of these tumors to conventional therapies as well as recurrent disease. GSCs are capable of self-renewal and differentiation; glioblastoma-derived GSCs are capable of de novo tumor formation when implanted in xenograft models. Further, GSCs possess unique surface markers, modulate characteristic signaling pathways to promote tumorigenesis, and play key roles in glioma vascular formation. These features, in addition to microenvironmental factors, present possible targets for specifically directing therapy against the GSC population within glioblastoma. In this review, the authors summarize the current knowledge of GSC biology and function and the role of GSCs in new vascular formation within glioblastoma and discuss potential therapeutic approaches to target GSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA