Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
J Anat ; 245(1): 109-136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366249

RESUMO

Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.


Assuntos
Órgão Vomeronasal , Lobos , Animais , Órgão Vomeronasal/fisiologia , Lobos/fisiologia , Masculino , Feromônios/metabolismo , Feminino , Bulbo Olfatório/fisiologia , Bulbo Olfatório/anatomia & histologia , Cães , Imuno-Histoquímica
2.
Cells Tissues Organs ; 213(2): 147-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36599327

RESUMO

The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.5 expression in some vomeronasal non-sensory epithelium (VNSE) cells and in the vomeronasal receptor cells of the vomeronasal sensory epithelium (VSE) in fetuses, young foals, and adult horses. Olfactory marker protein expression was exclusively localized in receptor cells of the VSE in fetuses, young foals, and adult horses and absent in VNSE. To identify the glycoconjugate type, lectin histochemistry was performed using 21 lectins. Semi-quantitative analysis revealed that the intensities of glycoconjugates labeled with WGA, DSL, LEL, and RCA120 were significantly higher in adult horse VSE than those in foal VSE, whereas the intensities of glycoconjugates labeled with LCA and PSA were significantly lower in adult horse VSE. The intensities of glycoconjugates labeled with s-WGA, WGA, BSL-II, DSL, LEL, STL, ConA, LCA, PSA, DBA, SBA, SJA, RCA120, jacalin, and ECL were significantly higher in adult horse VNSE than those in foal VNSE, whereas the intensity of glycoconjugates labeled with UEA-I was lower in adult horse VNSE. Histochemical analysis of each lectin revealed that various glycoconjugates in the VSE were present in the receptor, supporting, and basal cells of foals and adult horses. A similar pattern of lectin histochemistry was also observed in the VNSE of foals and adult horses. In conclusion, these results suggest that there is an increase in the level of N-acetylglucosamine (labeled by WGA, DSL, LEL) and galactose (labeled by RCA120) in horse VSE during postnatal development, implying that they may influence the function of VNO in adult horses.


Assuntos
Órgão Vomeronasal , Masculino , Humanos , Cavalos , Animais , Órgão Vomeronasal/metabolismo , Antígeno Prostático Específico/metabolismo , Epitélio/metabolismo , Lectinas/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000398

RESUMO

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Assuntos
Imuno-Histoquímica , Órgão Vomeronasal , Animais , Órgão Vomeronasal/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Raposas/genética , Raposas/metabolismo , Camundongos , Lobos/genética , Lobos/metabolismo , Cães , Canidae/genética
4.
Drug Chem Toxicol ; 46(1): 144-154, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915776

RESUMO

Norgalanthamine is a major component of Crinum asiaticum var. japonicum that exhibits several biological activities. This study evaluated the anti-inflammatory and anti-oxidative properties of norgalanthamine in mice with carbon tetrachloride (CCl4)-induced liver injury. Norgalanthamine (1 and 10 mg/kg) was orally administered to mice for 7 or 14 days, after which liver injury was induced by CCl4 (1.5 ml/kg, i.p.). The vehicle and positive controls consisted of phosphate-buffered saline and silymarin (100 mg/kg), respectively. In CCl4-injured mice, norgalanthamine pretreatment significantly reversed the increases in serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels, and the decrease in the serum glucose level. In the liver, norgalanthamine restored the activities of the antioxidant enzymes superoxide dismutase and catalase, while reducing lipid accumulation and, concurrently, the expression of genes involved in lipid synthesis, including peroxisome proliferator-activated receptor γ and adipocyte protein-2. Norgalanthamine also ameliorated inflammation by down-regulating the expression of the pro-inflammatory mediators, TNF-α, IL-1ß, and MCP-1, and up-regulating the Nrf2/HO-1 pathway. In addition, norgalanthamine decreased collagen deposition in liver tissue as shown on picrosirius red staining by down-regulating expression of the fibrosis-related genes αSMA and fibronectin. Collectively, these findings imply that norgalanthamine mitigates CCl4-induced hepatic injury by increasing anti-oxidative activity, down-regulating pro-inflammatory mediators and fibrosis-related genes in the liver.HighlightsNorgalanthamine ameliorated the hepatotoxicity after CCl4 injury.Norgalanthamine suppressed the activation of Kupffer cells and macrophages.Norgalanthamine down-regulated pro-inflammatory mediators.Norgalanthamine increased anti-oxidative activity via the Nrf2/HO-1 pathway.Norgalanthamine downregulated fibrosis-related genes in the liver.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Tetracloreto de Carbono/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/patologia , Antioxidantes/farmacologia , Fibrose , Mediadores da Inflamação/metabolismo , Lipídeos , Estresse Oxidativo
5.
Exp Cell Res ; 400(1): 112516, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577831

RESUMO

Ultraviolet B (UVB) irradiation induces skin damage and photoaging through several deleterious effects, including generation of reactive oxygen species (ROS), apoptosis of epidermal cells, inflammation, and collagen degradation in fibroblasts. Ergothioneine (EGT) is a naturally occurring amino acid with potential biological properties. We evaluated whether EGT protects against UVB-induced photoaging using a keratinocyte/fibroblast co-culture system. Keratinocytes were pretreated with EGT, irradiated with UVB, and co-cultured with fibroblasts. In keratinocytes, ROS production and apoptosis were assessed. We also analyzed the Nrf2/HO-1 pathway, HSP70, proapoptotic proteins, and paracrine cytokines by Western blotting and real-time PCR. Collagen degradation-related genes and senescence were also assessed in fibroblasts. EGT pretreatment of keratinocytes significantly inhibited downregulation of the Nrf2/HO-1 pathway and HSP70, and protected keratinocytes by suppressing production of ROS and cleavage of proapoptotic proteins, including caspase-8 and PARP. Furthermore, EGT significantly reduced the paracrine cytokines, including IL-1ß, IL-6, and TNF-α. In co-cultures of fibroblasts with EGT-treated keratinocytes, the expression levels of collagen degradation-related genes and fibroblast senescence were significantly decreased; however, synthesis of procollagen type I was significantly increased. Our results confirm that EGT suppresses the modification of collagen homeostasis in fibroblasts by preventing downregulation of the Nrf2/HO-1 pathway and HSP70 in keratinocytes following UVB irradiation.


Assuntos
Senescência Celular , Ergotioneína/farmacologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Raios Ultravioleta/efeitos adversos , Antioxidantes/farmacologia , Apoptose , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
6.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499161

RESUMO

Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), approximates the key histopathological, clinical, and immunological features of MS. Hippocampal dysfunction in MS and EAE causes varying degrees of cognitive and emotional impairments and synaptic abnormalities. However, the molecular alterations underlying hippocampal dysfunctions in MS and EAE are still under investigation. The purpose of this study was to identify differentially expressed genes (DEGs) in the hippocampus of mice with EAE in order to ascertain potential genes associated with hippocampal dysfunction. Gene expression in the hippocampus was analyzed by RNA-sequencing and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression analysis revealed 1202 DEGs; 1023 were upregulated and 179 were downregulated in the hippocampus of mice with EAE (p-value < 0.05 and fold change >1.5). Gene ontology (GO) analysis showed that the upregulated genes in the hippocampi of mice with EAE were associated with immune system processes, defense responses, immune responses, and regulation of immune responses, whereas the downregulated genes were related to learning or memory, behavior, and nervous system processes in the GO biological process. The expressions of hub genes from the search tool for the retrieval of interacting genes/proteins (STRING) analysis were validated by RT-qPCR. Additionally, gene set enrichment analysis showed that the upregulated genes in the hippocampus were associated with inflammatory responses: interferon-γ responses, allograft rejection, interferon-α responses, IL6_JAK_STAT3 signaling, inflammatory responses, complement, IL2_STAT5 signaling, TNF-α signaling via NF-κB, and apoptosis, whereas the downregulated genes were related to synaptic plasticity, dendritic development, and development of dendritic spine. This study characterized the transcriptome pattern in the hippocampi of mice with EAE and signaling pathways underpinning hippocampal dysfunction. However, further investigation is needed to determine the applicability of these findings from this rodent model to patients with MS. Collectively, these results indicate directions for further research to understand the mechanisms behind hippocampal dysfunction in EAE.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Perfilação da Expressão Gênica , Esclerose Múltipla/metabolismo
7.
J Integr Neurosci ; 20(2): 307-320, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258929

RESUMO

We evaluated the practicability of using the rarely utilized C57BL/6N mouse as a Parkinson's disease model established via the acute MPTP/probenecid (MPTP/p) protocol. We confirmed dopaminergic degeneration in terms of decreased expression levels of tyrosine hydroxylase in the substantia nigra and striatum of MPTP/p-lesioned mice. In addition, acute MPTP/p-lesioned mice demonstrated initial motor dysfunctions followed by spontaneous recovery. Interestingly, these MPTP/p-lesioned mice exhibited anxiolytic and antidepressive behaviors upon recovery from these motor deficits. Additionally, increased expression of norepinephrine transporters in several brain regions, including the hippocampus, medial prefrontal cortex, and striatum, and an elevated rate of adult neurogenesis (in terms of increased numbers of doublecortin-positive neuroblasts) in the hippocampus were observed after recovery from motor dysfunctions. We suggest that the emotional alterations observed under these experimental conditions may be associated with enhanced adult neurogenesis, increased levels of norepinephrine transporters, and/or a possible interplay between these two factors. Consequently, this acute MPTP/p model adequately satisfies the criteria for the validity of a Parkinson's disease model regarding dopaminergic loss and motor impairment. However, the non-motor findings may offer novel evidence against the practicability of utilizing the acute MPTP/p-lesioned mice for modeling the emotional aberrations found in Parkinson's disease patients.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopaminérgicos/farmacologia , Neurogênese/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198910

RESUMO

Changes in structural and functional neuroplasticity have been implicated in various neurological disorders. Sterol regulatory element-binding protein (SREBP)-1c is a critical regulatory molecule of lipid homeostasis in the brain. Recently, our findings have shown the potential involvement of SREBP-1c deficiency in the alteration of novel modulatory molecules in the hippocampus and occurrence of schizophrenia-like behaviors in mice. However, the possible underlying mechanisms, related to neuronal plasticity in the hippocampus, are yet to be elucidated. In this study, we investigated the hippocampus-dependent memory function and neuronal architecture of hippocampal neurons in SREBP-1c knockout (KO) mice. During the passive avoidance test, SREBP-1c KO mice showed memory impairment. Based on Golgi staining, the dendritic complexity, length, and branch points were significantly decreased in the apical cornu ammonis (CA) 1, CA3, and dentate gyrus (DG) subregions of the hippocampi of SREBP-1c KO mice, compared with those of wild-type (WT) mice. Additionally, significant decreases in the dendritic diameters were detected in the CA3 and DG subregions, and spine density was also significantly decreased in the apical CA3 subregion of the hippocampi of KO mice, compared with that of WT mice. Alterations in the proportions of stubby and thin-shaped dendritic spines were observed in the apical subcompartments of CA1 and CA3 in the hippocampi of KO mice. Furthermore, the corresponding differential decreases in the levels of SREBP-1 expression in the hippocampal subregions (particularly, a significant decrease in the level in the CA3) were detected by immunofluorescence. This study suggests that the contributions of SREBP-1c to the structural plasticity of the mouse hippocampus may have underlain the behavioral alterations. These findings offer insights into the critical role of SREBP-1c in hippocampal functioning in mice.


Assuntos
Espinhas Dendríticas/genética , Memória/fisiologia , Neurônios/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/patologia , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência
9.
Glia ; 65(11): 1848-1862, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28795433

RESUMO

Schwann cells (SCs), which form the peripheral myelin sheath, have the unique ability to dedifferentiate and to destroy the myelin sheath under various demyelination conditions. During SC dedifferentiation-associated demyelination (SAD) in Wallerian degeneration (WD) after axonal injury, SCs exhibit myelin and junctional instability, down-regulation of myelin gene expression and autophagic myelin breakdown. However, in inflammatory demyelinating neuropathy (IDN), it is still unclear how SCs react and contribute to segmental demyelination before myelin scavengers, macrophages, are activated for phagocytotic myelin digestion. Here, we compared the initial SC demyelination mechanism of IDN to that of WD using microarray and histochemical analyses and found that SCs in IDN exhibited several typical characteristics of SAD, including actin-associated E-cadherin destruction, without obvious axonal degeneration. However, autophagolysosome activation in SAD did not appear to be involved in direct myelin lipid digestion by SCs but was required for the separation of SC body from destabilized myelin sheath in IDN. Thus, lysosome inhibition in SCs suppressed segmental demyelination by preventing the exocytotic myelin clearance of SCs. In addition, we found that myelin rejection, which might also require the separation of SC cytoplasm from destabilized myelin sheath, was delayed in SC-specific Atg7 knockout mice in WD, suggesting that autophagolysosome-dependent exocytotic myelin clearance by SCs in IDN and WD is a shared mechanism. Finally, autophagolysosome activation in SAD was mechanistically dissociated with the junctional destruction in both IDN and WD. Thus, our findings indicate that SAD could be a common myelin clearance mechanism of SCs in various demyelinating conditions.


Assuntos
Desdiferenciação Celular/fisiologia , Neurite Autoimune Experimental/patologia , Neurite Autoimune Experimental/fisiopatologia , Células de Schwann/patologia , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Axotomia/efeitos adversos , Cloroquina/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurite Autoimune Experimental/tratamento farmacológico , Ratos , Ratos Endogâmicos Lew , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Células de Schwann/metabolismo , Células de Schwann/ultraestrutura , Neuropatia Ciática/tratamento farmacológico
10.
Neurobiol Learn Mem ; 133: 19-29, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27255708

RESUMO

Cranial irradiation can trigger adverse effects on brain functions, including cognitive ability. However, the cellular and molecular mechanisms underlying radiation-induced cognitive impairments remain still unknown. Immediate-early genes (IEGs) are implicated in neuronal plasticity and the related functions (i.e., memory formation) in the hippocampus. The present study quantitatively assessed changes in the mRNA and protein levels of the learning-induced IEGs, including Arc, c-fos, and zif268, in the mouse hippocampus after cranial irradiation using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry, respectively. Mice (male, 8-week-old C57BL/6) received whole-brain irradiation with 0 or 10Gy of gamma-ray and, 2weeks later, contextual fear conditioning (CFC) was used to induce IEGs. In the CFC task, mice evaluated 2weeks after irradiation exhibited significant memory deficits compared with sham (0Gy)-irradiated controls. The levels of mRNA encoding IEGs were significantly upregulated in the hippocampus 10 and 30min after CFC training. The mRNA levels in the irradiated hippocampi were significantly lower than those in the sham-irradiated controls. The IEG protein levels were significantly increased in all hippocampal regions, including the hippocampal dentate gyrus, cornu ammonis (CA)1, and CA3, after CFC training. The CFC-induced upregulation of Arc and c-fos in 10Gy-irradiated hippocampi was significantly lower than that in sham-irradiated controls, although there were no significant differences in the protein levels of the learning-induced zif268 between sham-irradiated and 10Gy-irradiated hippocampi. Thus, cranial irradiation with 10Gy of gamma-ray impairs the induction of hippocampal IEGs (particularly Arc and c-fos) via behavioral contextual fear memory, and this disturbance may be associated with the memory deficits evident in mice after cranial irradiation, possibly through the dysregulation of neuronal plasticity during memory formation.


Assuntos
Irradiação Craniana/efeitos adversos , Medo/fisiologia , Genes Precoces/fisiologia , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Neurobiol Learn Mem ; 121: 12-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25792232

RESUMO

The brain can be exposed to ionizing radiation in various ways, and such irradiation can trigger adverse effects, particularly on learning and memory. However, the precise mechanisms of cognitive impairments induced by cranial irradiation remain unknown. In the hippocampus, brain-derived neurotrophic factor (BDNF) plays roles in neurogenesis, neuronal survival, neuronal differentiation, and synaptic plasticity. The significance of BDNF transcript variants in these contexts is becoming clearer. In the present study, both object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice were assessed 1 month after a single exposure to cranial irradiation (10 Gy) to evaluate hippocampus-related behavioral dysfunction following such irradiation. Furthermore, changes in the levels of BDNF, the cAMP-response element binding protein (CREB) phosphorylation, and BDNF transcript variants were measured in the hippocampus 1 month after cranial irradiation. On object recognition memory and contextual fear conditioning tasks, mice evaluated 1 month after irradiation exhibited significant memory deficits compared to sham-irradiated controls, but no apparent change was evident in locomotor activity. Both phosphorylated CREB and BDNF protein levels were significantly downregulated after irradiation of the hippocampus. Moreover, the levels of mRNAs encoding common BDNF transcripts, and exons IIC, III, IV, VII, VIII, and IXA, were significantly downregulated after irradiation. The reductions in CREB phosphorylation and BDNF expression induced by differential regulation of BDNF hippocampal exon transcripts may be associated with the memory deficits evident in mice after cranial irradiation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/efeitos da radiação , Condicionamento Clássico/efeitos da radiação , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos da radiação , Hipocampo/efeitos da radiação , Reconhecimento Psicológico/efeitos da radiação , Animais , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Clássico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Medo/fisiologia , Medo/efeitos da radiação , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos da radiação , Fosforilação , RNA Mensageiro/metabolismo , RNA Mensageiro/efeitos da radiação , Reconhecimento Psicológico/fisiologia , Transdução de Sinais/efeitos da radiação
12.
Brain Behav Immun ; 36: 147-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24513875

RESUMO

Individuals with cancer are particularly susceptible to depression and cognitive impairment. However, the precise mechanisms underlying cancer-induced hippocampal dysfunction are poorly understood. We investigated the effects of a peripheral tumor on emotional behavior, hippocampus-dependent memory and associated molecular and cellular features using an experimental animal model. Behavioral alterations were examined; stress-related parameters measured; hippocampal neurogenesis evaluated; and the levels of pro-inflammatory cytokines, brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (COX-2) assayed, 2 weeks after inoculation of adult BALB/c mice with cells of a colon carcinoma cell line (CT26). As the tumors developed, CT26-inoculated mice showed significant increases in the depression-like behavior (measured using the tail suspension test) and memory impairment (in terms of object recognition) compared with vehicle-inoculated controls. The presence of a peripheral tumor significantly elevated the hippocampal levels of mRNAs encoding interleukin-6 (IL-6) and tumor necrosis factor-α, as well as plasma IL-6 and corticosterone levels. Additionally, the adrenal glands became enlarged, and the numbers of Ki-67-positive proliferating hippocampal cells and doublecortin-positive immature progenitor neurons, as well as the constitutive levels of mRNAs encoding BDNF and COX-2 were significantly reduced. Therefore, a peripheral tumor alone may be sufficient to induce hippocampal dysfunction, possibly by reducing the rate of neurogenesis and the levels of BDNF and COX-2 in that tissue and also by increasing stress-related parameters and the circulating levels of pro-inflammatory cytokines.


Assuntos
Hipocampo/metabolismo , Neoplasias Experimentais/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Corticosterona/sangue , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Depressão/metabolismo , Feminino , Hipocampo/patologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neurogênese/fisiologia , Reconhecimento Psicológico/fisiologia , Estresse Fisiológico
13.
Anim Cells Syst (Seoul) ; 28(1): 37-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249123

RESUMO

Visual impairment associated with uveitis is among the potential complications in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Bioinformatics analyses have shown that some hub genes are closely associated with the molecular mechanisms underlying uveitis in EAE. This study evaluated whether 4-allyl-2-methoxyphenol (eugenol) can mitigate the pathogenesis of uveitis in EAE through the interruption of key uveitogenic gene expression. Myelin oligodendrocyte glycoprotein35-55 (MOG) peptide-immunized C57BL/6 mice were injected intraperitoneally with eugenol. The eyeballs and spinal cords of EAE mice with or without eugenol treatment were collected simultaneously and immunohistochemical and molecular biological analyses were conducted. Eugenol treatment significantly ameliorated hindlimb paralysis. Ionized calcium-binding adapter molecule 1 (Iba-1) immunohistochemistry showed that the inflammatory response was significantly reduced in the uvea of eugenol-treated EAE mice compared with vehicle-treated controls. Eugenol also significantly reduced the expression of key uveitogenic genes including C1qb and Tyrobp. The suppressive effect of eugenol on inflammation was also observed in the spinal cord, as determined by the suppression of Iba-1-positive microglial cells. Together, these results suggest that the ameliorative effect of eugenol against EAE uveitis is associated with the suppression of key proinflammatory genes, which may represent targets for the treatment of uveitis.

14.
Mol Neurobiol ; 61(8): 5771-5786, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38233686

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that shows demyelination in the central nervous system and functional deficits, including olfactory impairment. However, the genes related to olfactory impairment in EAE are unknown. We evaluated hub genes of the olfactory bulb in EAE mice. Differentially expressed genes (cut-offs, fold change > 2 and adjusted p < 0.05) and their related pathways in olfactory bulbs were subjected to gene ontology (GO) pathway analysis, gene set enrichment analysis (GSEA). Protein-protein interactions with selected genes were evaluated using the Search Tool for the Retrieval of Interacting Genes/Proteins. Gene regulatory networks (GRNs) which were constructed at the post-transcriptional level, including the genes-transcription factors (TFs) and gene-microRNAs (miRNAs) interaction networks. Twelve hub genes were found, three of which (Ctss, Itgb2, and Tlr2) were validated by RT-qPCR to be related to GO pathways such as immune response and regulation of immune response. GSEA showed that neuron-related genes-including Atp6v1g2, Egr1, and Gap43-and their pathways were significantly downregulated. GRNs analysis of six genes (Ctss, Itgb2, Tlr2, Atp6v1g2, Egr1, and Gap43) revealed 37 TFs and 84 miRNAs were identified as potential regulators of six genes, indicating significant interaction among six genes, TFs, and miRNAs. Collectively, these results suggest that transcriptomic analysis of the olfactory bulb of EAE mice can provide insight into olfactory dysfunction and reveal therapeutic targets for olfactory impairment.


Assuntos
Encefalomielite Autoimune Experimental , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos Endogâmicos C57BL , Bulbo Olfatório , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Bulbo Olfatório/metabolismo , Feminino , Transcriptoma/genética , Transtornos do Olfato/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ontologia Genética , Mapas de Interação de Proteínas/genética
15.
J Vet Med Sci ; 86(5): 458-462, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508726

RESUMO

Little is known about the neuronal structure of the vomeronasal organ (VNO), a receptor organ responsible for pheromone perception, in the alpaca (Vicugna pacos). This study was performed to determine the localization of neuronal elements, including protein gene product 9.5 (PGP 9.5), a pan-neuronal marker, olfactory marker protein (OMP), a marker of mature olfactory receptor cells, and phospholipase C beta 2 (PLC-ß2), a marker of solitary chemoreceptor cells (SCCs), in the VNO. OMP was identified in receptor cells of the vomeronasal sensory epithelium (VSE), while PGP 9.5 and PLC-ß2 were localized in both the VSE and vomeronasal non-sensory epithelium. Collectively, these results suggested that the alpaca VNO possesses SCCs and olfactory receptor cells, which recognize both harmful substances and pheromones.


Assuntos
Camelídeos Americanos , Proteína de Marcador Olfatório , Órgão Vomeronasal , Animais , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/citologia , Camelídeos Americanos/anatomia & histologia , Masculino , Proteína de Marcador Olfatório/metabolismo , Fosfolipase C beta/metabolismo , Feminino , Neurônios Receptores Olfatórios , Células Quimiorreceptoras , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética
16.
Vet Anim Sci ; 25: 100361, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38947185

RESUMO

Previously, we demonstrated unique insertion/deletion polymorphisms of equine histidine-rich glycoprotein (eHRG) with five genotypes composed of 45-bp or 90-bp deletions in the histidine-rich region of eHRG in Thoroughbred horses. Although leukocytes are typically used to collect DNA for genotyping, blood sampling from animals is sometimes difficult and invasive. Moreover, the method for extracting DNA from blood leukocytes involves complicated steps and must be performed soon after blood sampling for sensitive gene analysis. In the present study, we performed eHRG genotyping using DNA, isolated from oral mucosa swabs collected by rubbing the mucosa on the underside of the upper lip of horses and 100 mg of freshly excreted feces obtained by scraping their surface. In the present study, we performed eHRG genotyping using DNA isolated from oral mucosa swabs and feces of horses (18 Thoroughbreds, 17 mixed breeds, 2 warm bloods), and compared the accuracy of this method with that of the method using DNA from leukocytes. The DNA derived from oral mucosa swabs was sufficient in quantity and quality for eHRG genotyping. However, DNA derived from fecal samples requires a more sensitive detection system because of contamination with non-horse DNA, and the test quality is low. Collection of oral mucosa swabs is less invasive than blood sampling; further, oral swabs can be stored for a longer period in a specified high-quality solution. Therefore, collecting DNA samples from oral mucosa swabs is recommended for the genetic analysis of not only horses but also other animals that are not accustomed to humans.

17.
Anim Cells Syst (Seoul) ; 28(1): 198-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693920

RESUMO

Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted p-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (Notch3, Gng4, Itga3, Grin2d, Hgf, Fgf11, Htr3a, and Col6a2), along with a significant downregulation of two hub genes (Itga11 and Plp1), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.

18.
Int Immunopharmacol ; 128: 111479, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215654

RESUMO

Eugenol is a principal compound in essential clove oil, known for its anti-inflammatory and antioxidant properties. While recent studies have demonstrated its neuroprotective effects on central nervous system (CNS) injuries, such as brain ischemia/reperfusion injuries, but its potential impact on multiple sclerosis (MS), an autoimmune disease of the CNS, has not yet been explored. We evaluated the therapeutic effects of eugenol on experimental autoimmune encephalomyelitis (EAE), an established animal model of MS. EAE was induced in C57BL/6 mice using the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. Clinical symptoms, including paralysis, were monitored daily, and levels of pro-inflammatory mediators were evaluated using real-time quantitative polymerase chain reaction, Western blot analyses, and immunohistochemistry. Daily oral administration of eugenol to MOG-induced EAE mice led to a notable decline in the severity of clinical symptoms. Eugenol inhibited EAE-related immune cell infiltration and the production of pro-inflammatory mediators. Histological examinations confirmed its ability to mitigate inflammation and demyelination in the spinal cord post-EAE induction. Eugenol alleviates neuroinflammation in the spinal cords of EAE-induced mice, primarily through anti-inflammatory action.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Eugenol/uso terapêutico , Citocinas/uso terapêutico , Camundongos Endogâmicos C57BL , Medula Espinal/patologia , Esclerose Múltipla/tratamento farmacológico , Glicoproteína Mielina-Oligodendrócito , Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação
19.
Zool Res ; 45(2): 398-414, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485508

RESUMO

Structural plasticity is critical for the functional diversity of neurons in the brain. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used model for multiple sclerosis (MS), successfully mimicking its key pathological features (inflammation, demyelination, axonal loss, and gliosis) and clinical symptoms (motor and non-motor dysfunctions). Recent studies have demonstrated the importance of synaptic plasticity in EAE pathogenesis. In the present study, we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase (11 days post-immunization, DPI) and chronic phase (28 DPI). EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases. Dendritic complexity was largely affected in the cornu ammonis 1 (CA1) and CA3 apical and dentate gyrus (DG) subregions of the hippocampus during the chronic phase, while this effect was only noted in the CA1 apical subregion in the early phase. Moreover, dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE, but only reduced in the DG subregion during the chronic phase. Furthermore, mRNA levels of proinflammatory cytokines ( Il1ß, Tnfα, and Ifnγ) and glial cell markers ( Gfap and Cd68) were significantly increased, whereas the expression of activity-regulated cytoskeleton-associated protein (ARC) was reduced during the chronic phase. Similarly, exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression. Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation upon treatment with proinflammatory cytokines. Collectively, these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus, possibly through the ERK-ARC pathway, indicating that this alteration may be associated with hippocampal dysfunctions in EAE.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Doenças dos Roedores , Camundongos , Animais , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/veterinária , Hipocampo/metabolismo , Neurônios/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/veterinária , Citocinas/metabolismo , Doenças dos Roedores/metabolismo , Doenças dos Roedores/patologia
20.
J Vet Sci ; 25(3): e35, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38834505

RESUMO

IMPORTANCE: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. OBJECTIVE: This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. METHODS: Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. RESULTS: Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. CONCLUSIONS AND RELEVANCE: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.


Assuntos
Encefalomielite Autoimune Experimental , Pulmão , Camundongos Endogâmicos C57BL , Animais , Encefalomielite Autoimune Experimental/patologia , Camundongos , Pulmão/patologia , Feminino , Imuno-Histoquímica , Osteopontina/metabolismo , Galectina 3/metabolismo , Peroxidase/metabolismo , Receptores de Hialuronatos/metabolismo , Medula Espinal/patologia , Inflamação/patologia , Western Blotting
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA