Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(24): 245101, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951776

RESUMO

Using a novel wave-particle interaction analysis, we show observational evidence of energy transfer from fast magnetosonic waves (MSWs) to low-energy protons in the magnetosphere. The analysis clearly indicates that the transferred proton energies are further converted to excite electromagnetic ion cyclotron waves. Since MSWs are excited by hot ions, cross-energy coupling of ions occurs through MSWs. The result also suggests a new energy transfer path of exciting electromagnetic ion cyclotron waves in the magnetosphere, and a complex interplay between various wave modes and particle populations.

2.
Sci Rep ; 14(1): 2327, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282034

RESUMO

The hazardous plasma environment surrounding Earth poses risks to satellites due to internal charging and surface charging effects. Accurate predictions of these risks are crucial for minimizing damage and preparing for system failures of satellites. To forecast the plasma environment, it is essential to know the current state of the system, as the accuracy of the forecast depends on the accuracy of the initial condition of the forecast. In this study, we use data assimilation techniques to combine observational data and model predictions, and present the first global validation of a data-assimilative electron ring current nowcast during a geomagnetic storm. By assimilating measurements from one satellite and validating the results against another satellite in a different magnetic local time sector, we assess the global response and effectiveness of the data assimilation technique for space weather applications. Using this method, we found that the simulation accuracy can be drastically improved at times when observations are available while eliminating almost all of the bias previously present in the model. These findings contribute to the construction of improved operational models in estimating surface charging risks and providing realistic 'source' populations for radiation belt simulations.

3.
Sci Rep ; 13(1): 6450, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217547

RESUMO

Equatorial plasma bubbles are a phenomenon of plasma density depletion with small-scale density irregularities, normally observed in the equatorial ionosphere. This phenomenon, which impacts satellite-based communications, was observed in the Asia-Pacific region after the largest-on-record January 15, 2022 eruption of the Tonga volcano. We used satellite and ground-based ionospheric observations to demonstrate that an air pressure wave triggered by the Tonga volcanic eruption could cause the emergence of an equatorial plasma bubble. The most prominent observation result shows a sudden increase of electron density and height of the ionosphere several ten minutes to hours before the initial arrival of the air pressure wave in the lower atmosphere. The propagation speed of ionospheric electron density variations was ~ 480-540 m/s, whose speed was higher than that of a Lamb wave (~315 m/s) in the troposphere. The electron density variations started larger in the Northern Hemisphere than in the Southern Hemisphere. The fast response of the ionosphere could be caused by an instantaneous transmission of the electric field to the magnetic conjugate ionosphere along the magnetic field lines. After the ionospheric perturbations, electron density depletion appeared in the equatorial and low-latitude ionosphere and extended at least up to ±25° in geomagnetic latitude.

4.
Nat Commun ; 13(1): 1611, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338136

RESUMO

Energetic electron precipitation from Earth's outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt's energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.

5.
Sci Rep ; 11(1): 13480, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188084

RESUMO

A study using Arase data gives the first observational evidence that the frequency drift of electromagnetic ion cyclotron (EMIC) waves is caused by cyclotron trapping. EMIC emissions play an important role in planetary magnetospheres, causing scattering loss of radiation belt relativistic electrons and energetic protons. EMIC waves frequently show nonlinear signatures that include frequency drift and amplitude enhancements. While nonlinear growth theory has suggested that the frequency change is caused by nonlinear resonant currents owing to cyclotron trapping of the particles, observational evidence for this has been elusive. We survey the wave data observed by Arase from March, 2017 to September 2019, and find the best falling tone emission event, one detected on 11th November, 2017, for the wave particle interaction analysis. Here, we show for the first time direct evidence of the formation of a proton hill in phase space indicating cyclotron trapping. The associated resonance currents and the wave growth of a falling tone EMIC wave are observed coincident with the hill, as theoretically predicted.

6.
Sci Rep ; 11(1): 1610, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462252

RESUMO

Bright, discrete, thin auroral arcs are a typical form of auroras in nightside polar regions. Their light is produced by magnetospheric electrons, accelerated downward to obtain energies of several kilo electron volts by a quasi-static electric field. These electrons collide with and excite thermosphere atoms to higher energy states at altitude of ~ 100 km; relaxation from these states produces the auroral light. The electric potential accelerating the aurora-producing electrons has been reported to lie immediately above the ionosphere, at a few altitudes of thousand kilometres1. However, the highest altitude at which the precipitating electron is accelerated by the parallel potential drop is still unclear. Here, we show that active auroral arcs are powered by electrons accelerated at altitudes reaching greater than 30,000 km. We employ high-angular resolution electron observations achieved by the Arase satellite in the magnetosphere and optical observations of the aurora from a ground-based all-sky imager. Our observations of electron properties and dynamics resemble those of electron potential acceleration reported from low-altitude satellites except that the acceleration region is much higher than previously assumed. This shows that the dominant auroral acceleration region can extend far above a few thousand kilometres, well within the magnetospheric plasma proper, suggesting formation of the acceleration region by some unknown magnetospheric mechanisms.

7.
Nat Commun ; 10(1): 257, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651535

RESUMO

Chorus waves, among the most intense electromagnetic emissions in the Earth's magnetosphere, magnetized planets, and laboratory plasmas, play an important role in the acceleration and loss of energetic electrons in the plasma universe through resonant interactions with electrons. However, the spatial evolution of the electron resonant interactions with electromagnetic waves remains poorly understood owing to imaging difficulties. Here we provide a compelling visualization of chorus element wave-particle interactions in the Earth's magnetosphere. Through in-situ measurements of chorus waveforms with the Arase satellite and transient auroral flashes from electron precipitation events as detected by 100-Hz video sampling from the ground, Earth's aurora becomes a display for the resonant interactions. Our observations capture an asymmetric spatial development, correlated strongly with the amplitude variation of discrete chorus elements. This finding is not theoretically predicted but helps in understanding the rapid scattering processes of energetic electrons near the Earth and other magnetized planets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA