Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38445839

RESUMO

A method for characterizing the topological fluctuations in liquids is proposed. This approach exploits the concept of the weighted gyration tensor of a collection of particles and permits the definition of a local configurational unit (LCU). The first principal axis of the gyration tensor serves as the director of the LCU, which can be tracked and analyzed by molecular dynamics simulations. Analysis of moderately supercooled Kob-Andersen mixtures suggests that orientational relaxation of the LCU closely follows viscoelastic relaxation and exhibits a two-stage behavior. The slow relaxing component of the LCU corresponds to the structural, Maxwellian mechanical relaxation. Additionally, it is found that the mean curvature of the LCUs is approximately zero at the Maxwell relaxation time with the Gaussian curvature being negative. This observation implies that structural relaxation occurs when the configurationally stable and destabilized regions interpenetrate each other in a bicontinuous manner. Finally, the mean and Gaussian curvatures of the LCUs can serve as reduced variables for the shear stress correlation, providing a compelling proof of the close connection between viscoelastic relaxation and topological fluctuations in glass-forming liquids.

2.
J Chem Phys ; 156(13): 131101, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395880

RESUMO

We outline a machine learning strategy for quantitively determining the conformation of AB-type diblock copolymers with excluded volume effects using small angle scattering. Complemented by computer simulations, a correlation matrix connecting conformations of different copolymers according to their scattering features is established on the mathematical framework of a Gaussian process, a multivariate extension of the familiar univariate Gaussian distribution. We show that the relevant conformational characteristics of copolymers can be probabilistically inferred from their coherent scattering cross sections without any restriction imposed by model assumptions. This work not only facilitates the quantitative structural analysis of copolymer solutions but also provides the reliable benchmarking for the related theoretical development of scattering functions.

3.
J Chem Phys ; 153(18): 180902, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187433

RESUMO

In liquids, the timescales for structure, diffusion, and phonon are all similar, of the order of a pico-second. This not only makes characterization of liquid dynamics difficult but also renders it highly questionable to describe liquids in these terms. In particular, the current definition of the structure of liquids by the instantaneous structure may need to be expanded because the liquid structure is inherently dynamic. Here, we advocate describing the liquid structure through the distinct-part of the Van Hove function, which can be determined by inelastic neutron and x-ray scattering measurements as well as by simulation. It depicts the dynamic correlation between atoms in space and time, starting with the instantaneous correlation function at t = 0. The observed Van Hove functions show that the atomic dynamics is strongly correlated in some liquids, such as water. The effect of atomic correlation on various transport properties of fluid, including viscosity and diffusivity, is discussed.

4.
J Chem Phys ; 153(18): 184902, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187411

RESUMO

Self-assembly of amphiphilic polymers in water is of fundamental and practical importance. Significant amounts of free unimers and associated micellar aggregates often coexist over a wide range of phase regions. The thermodynamic and kinetic properties of the microphase separation are closely related to the relative population density of unimers and micelles. Although the scattering technique has been employed to identify the structure of micellar aggregates as well as their time-evolution, the determination of the population ratio of micelles to unimers remains a challenging problem due to their difference in scattering power. Here, using small-angle neutron scattering (SANS), we present a comprehensive structural study of amphiphilic n-dodecyl-PNIPAm polymers, which shows a bimodal size distribution in water. By adjusting the deuterium/hydrogen ratio of water, the intra-micellar polymer and water distributions are obtained from the SANS spectra. The micellar size and number density are further determined, and the population densities of micelles and unimers are calculated to quantitatively address the degree of micellization at different temperatures. Our method can be used to provide an in-depth insight into the solution properties of microphase separation, which are present in many amphiphilic systems.

5.
J Synchrotron Radiat ; 22(1): 119-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537597

RESUMO

X-ray photon correlation spectroscopy (XPCS) of swollen rubber containing spherical silica nanoparticles is reported. It is shown that irradiation by intense X-rays leads to the breakdown of cross-links, thereby inducing the local rearrangement of silica nanoparticles. This rearrangement process depends on the cross-link density and is characterized by a compressed exponential relaxation with aging behaviour, which resembles a common feature of complex fluids observed with XPCS.

6.
Soft Matter ; 11(29): 5918-25, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26119976

RESUMO

A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

7.
J Synchrotron Radiat ; 21(Pt 1): 1-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365910

RESUMO

A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm(-1) was thereby achieved at an X-ray energy of 8 keV.

8.
J Phys Chem B ; 128(6): 1544-1549, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306707

RESUMO

Improving the proton transport in polymer electrolytes impacts the performance of next-generation solid-state batteries. However, little is known about proton conductivity in nonaqueous systems due to the lack of an appropriate level of fundamental understanding. Here, we studied the proton transport in small molecules with dynamic hydrogen bonding, 1,2,3-triazole, as a model system of proton hopping in a nonaqueous environment using incoherent quasi-elastic neutron scattering. By using the jump-diffusion model, we identified the elementary jump-diffusion motion of protons at a much shorter length scale than those by nuclear magnetic resonance and impedance spectroscopy for the estimated long-range diffusion. In addition, a spatially restricted diffusive motion was observed, indicating that proton motion in 1,2,3-triazole is complex with various local correlated dynamics. These correlated dynamics will be important in elucidating the nature of the proton dynamics in nonaqueous systems.

9.
J Colloid Interface Sci ; 659: 739-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211491

RESUMO

HYPOTHESIS: The formation of distorted lamellar phases, distinguished by their arrangement of crumpled, stacked layers, is frequently accompanied by the disruption of long-range order, leading to the formation of interconnected network structures commonly observed in the sponge phase. Nevertheless, traditional scattering functions grounded in deterministic modeling fall short of fully representing these intricate structural characteristics. Our hypothesis posits that a deep learning method, in conjunction with the generalized leveled wave approach used for describing structural features of distorted lamellar phases, can quantitatively unveil the inherent spatial correlations within these phases. EXPERIMENTS AND SIMULATIONS: This report outlines a novel strategy that integrates convolutional neural networks and variational autoencoders, supported by stochastically generated density fluctuations, into a regression analysis framework for extracting structural features of distorted lamellar phases from small angle neutron scattering data. To evaluate the efficacy of our proposed approach, we conducted computational accuracy assessments and applied it to the analysis of experimentally measured small angle neutron scattering spectra of AOT surfactant solutions, a frequently studied lamellar system. FINDINGS: The findings unambiguously demonstrate that deep learning provides a dependable and quantitative approach for investigating the morphology of wide variations of distorted lamellar phases. It is adaptable for deciphering structures from the lamellar to sponge phase including intermediate structures exhibiting fused topological features. This research highlights the effectiveness of deep learning methods in tackling complex issues in the field of soft matter structural analysis and beyond.

10.
J Am Chem Soc ; 135(7): 2574-82, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23368537

RESUMO

Polymeric micelles have been extensively studied as nanoscale drug carriers. Knowing the inner structure of polymeric micelles that encapsulate hydrophobic drugs is important to design effective carriers. In our study, the hydrophobic compound tetrabromocathecol (TBC) was chosen as a drug-equivalent model molecule. The bromine atoms in TBC act as probes in anomalous small-angle X-ray scattering (ASAXS) allowing for its localization in the polymeric micelles whose shape and size were determined by normal small-angle X-ray scattering (SAXS). Light scattering measurements coupled with field flow fractionation were also carried out to determine the aggregation number of micelles. A core-corona spherical model was used to explain the shape of the micelles, while the distribution of bromine atoms was explained with a hard-sphere model. Interestingly, the radius of the spherical region populated with bromine atoms was larger than the one of the sphere corresponding to the hydrophobic core of the micelle. This result suggests that the TBC molecules infiltrate the PEG hydrophilic domain in the vicinity of the core/shell interface. The results of light scattering and SAXS indicate that the PEG chains at the shell region are densely packed, and thus the PEG domain close to the interface has enough hydrophobicity to tolerate the presence of hydrophobic compounds.


Assuntos
Polietilenoglicóis/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Estrutura Molecular , Tamanho da Partícula , Espalhamento de Radiação , Raios X
11.
J Synchrotron Radiat ; 20(Pt 5): 801-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955045

RESUMO

Combined X-ray photon correlation spectroscopy (XPCS) and diffracted X-ray tracking (DXT) measurements of carbon-black nanocrystals embedded in styrene-butadiene rubber were performed. From the intensity fluctuation of speckle patterns in a small-angle scattering region (XPCS), dynamical information relating to the translational motion can be obtained, and the rotational motion is observed through the changes in the positions of DXT diffraction spots. Graphitized carbon-black nanocrystals in unvulcanized styrene-butadiene rubber showed an apparent discrepancy between their translational and rotational motions; this result seems to support a stress-relaxation model for the origin of super-diffusive particle motion that is widely observed in nanocolloidal systems. Combined measurements using these two techniques will give new insights into nanoscopic dynamics, and will be useful as a microrheology technique.

12.
Opt Express ; 20(24): 26878-87, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187541

RESUMO

X-ray speckle visibility spectroscopy (XSVS) is a method for studying dynamics in disordered systems. This method was originally developed in the visible-light region, in which an intense laser can be used. When applied in the X-ray region, where the number of photons is much smaller than in the visible-light region, it suffers from photon statistics. In this paper, we quantitatively discuss the effect of photon shot noise on XSVS analyses. The effect is experimentally confirmed using sequential speckle patterns from Brownian polystyrene nanospheres in glycerol.


Assuntos
Algoritmos , Fótons , Espalhamento de Radiação , Análise Espectral/instrumentação , Difração de Raios X/métodos , Simulação por Computador , Humanos , Raios X
13.
Langmuir ; 28(7): 3378-84, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22268626

RESUMO

The motion of an oil-water interface that mimics biological motility was investigated in a Hele-Shaw-like cell where elastic surfactant aggregates were formed at the oil-water interface. With the interfacial motion, millimeter-scale pillar structures composed of the aggregates were formed. The pillars grew downward in the aqueous phase, and the separations between pillars were roughly equal. Small-angle X-ray scattering using a microbeam X-ray revealed that these aggregates had nanometer-scale lamellar structures whose orientation correlated well with their location in the pillar structure. It is suggested that these hierarchical spatial structures are tailored by the spontaneous interfacial motion.


Assuntos
Óleos/química , Água/química , Nanoestruturas , Propriedades de Superfície , Tensoativos
14.
ACS Macro Lett ; 11(1): 66-71, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574783

RESUMO

Structural studies of wormlike micelles have so far mostly focused on the conformational properties of surfactant aggregates. The diffuse ionic atmosphere, which has a profound influence on various micellization phenomena such as thermodynamic stability and structural polymorphism, remains largely unexplored experimentally. In this report a strategy of contrast variation small-angle neutron scattering for this crucial structural study is outlined. Underlined by a general criterion established for unbiasedly identifying the length scale relevant to charge association from the spectral evolution, our analytical framework can provide a quantitative description of counterion distribution in a mathematically tractable manner. Our method can be conveniently extended to facilitate structural studies of complex multicomponent systems using contrast variation neutron scattering.


Assuntos
Micelas , Difração de Nêutrons , Atmosfera , Íons , Difração de Nêutrons/métodos , Nêutrons , Espalhamento a Baixo Ângulo
15.
J Phys Chem Lett ; 13(25): 5956-5962, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35735362

RESUMO

Molten inorganic salts are attracting resurgent attention because of their unique physicochemical properties, making them promising media for next-generation concentrating solar power systems and molten salt reactors. The dynamics of these highly disordered ionic media is largely studied by theoretical simulations, while the robust experimental techniques capable of observing local dynamics are not well-developed. To provide fundamental insights into the atomic-scale transport properties of molten salts, we report the real-space dynamics of molten magnesium chloride at high temperatures employing the Van Hove correlation function obtained by inelastic neutron scattering. Our results directly depict the distance-dependent dynamics of a molten salt on the picosecond time scale. This study demonstrates the capability of the developed approach to describe the locally correlated- and self-dynamics in molten salts, significantly improving our understanding of the interplay between microscopic structural parameters and their dynamics that ultimately control physical properties of condensed matter in extreme environments.

16.
J Chem Theory Comput ; 17(10): 5992-6005, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516134

RESUMO

We present molecular-simulation-based calculations of the Van Hove correlation function (VHF) of water using multiple modeling approaches: classical molecular dynamics with simple three-site nonpolarizable models, with a polarizable model, and with a reactive force field; density functional tight-binding molecular dynamics; and ab initio molecular dynamics. Due to the many orders of magnitude difference in the computational cost of these approaches, we investigate how small and short the simulations can be while still yielding sufficiently accurate and interpretable results for the VHF. We investigate the accuracy of the different models by comparing them to recently published inelastic X-ray scattering measurements of the VHF. We find that all of the models exhibit qualitative agreement with the experiments, and in some models and for some properties, the agreement is quantitative. This work lays the foundation for future simulation approaches to calculating the VHF for aqueous solutions in bulk and under nanoconfinement.

17.
J Synchrotron Radiat ; 17(6): 737-42, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20975218

RESUMO

An indirectly illuminated X-ray area detector is employed for X-ray photon correlation spectroscopy (XPCS). The detector consists of a phosphor screen, an image intensifier (microchannel plate), a coupling lens and either a CCD or CMOS image sensor. By changing the gain of the image intensifier, both photon-counting and integrating measurements can be performed. Speckle patterns with a high signal-to-noise ratio can be observed in a single shot in the integrating mode, while XPCS measurement can be performed with much fewer photons in the photon-counting mode. By switching the image sensor, various combinations of frame rate, dynamic range and active area can be obtained. By virtue of these characteristics, this detector can be used for XPCS measurements of various types of samples that show slow or fast dynamics, a high or low scattering intensity, and a wide or narrow range of scattering angles.

18.
Phys Rev E ; 102(3-1): 032604, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075912

RESUMO

We show that the self-part of the Van Hove function-the correlation function describing the dynamics of a single molecule-of water can be determined through a high-resolution inelastic x-ray scattering experiment. The measurement of inelastic x-ray scattering up to 10Å^{-1} makes it possible to convert the inelastic x-ray scattering spectra into the Van Hove function, and its self-part is extracted from the short-range correlations. The diffusivity estimated from the short-range dynamics of water molecules is different from the long-range diffusivity measured by other methods. This approach using the experimentally determined self-part of the Van Hove function will be useful to the study of the local dynamics of atoms and molecules in liquids.

19.
Nat Commun ; 11(1): 6213, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277499

RESUMO

With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.

20.
J Cosmet Sci ; 60(6): 637-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20038352

RESUMO

To clarify hair changes by aging, the effect of age on hair properties was investigated from macro- to microscopic view points. Sensory hair luster tests were performed on 230 Japanese females from 10 to 70 years of age, revealing that hair luster decreases with age. The age dependence of the hair diameter and the ellipticity of the hair cross section could not explain luster reduction by aging. It has been determined that an irregular increase in fiber curvature occurs with age and is a cause of luster reduction with aging. A detailed structural analysis by synchrotron radiation microbeam X-ray diffraction revealed that the inhomogeneity in the lateral distribution of the hair microstructure increased with age and relates to the irregular increase in curvature. Such an increase in curvature is one of the important factors that leads to a poor alignment of hairs and luster reduction, and is related to the appearance of aging hair.


Assuntos
Envelhecimento/fisiologia , Cabelo/fisiologia , Adolescente , Adulto , Idoso , Criança , Feminino , Cabelo/ultraestrutura , Humanos , Pessoa de Meia-Idade , Propriedades de Superfície , Difração de Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA