RESUMO
Dimethylaminoethanol (DMAE) and its salts have been used to treat numerous disorders in humans and hence safety of its use is a concern. DMAE is a close structural analog of choline, an essential nutrient. Exposure to DMAE may affect choline uptake and synthesis. The current investigation characterizes: 1) the absorption, distribution, metabolism, and excretion (ADME) of DMAE in Wistar Han rats and B6C3F1 mice following a single gavage or intravenous (IV) administration of 10, 100 or 500â¯mg/kg [14C]DMAE, and 2) the ADME of [14C]choline (160â¯mg/kg) and the effect on its disposition following pre-treatment with DMAE (100 or 500â¯mg/kg). In both rats and mice, following gavage administration, DMAE was excreted in urine (16-69%) and as exhaled CO2 (3-22%). The tissue retention was moderate (21-44%); however, the brain concentrations were low and there was no accumulation. Serum choline levels were not elevated following administration of DMAE. The DMAE metabolites in urine were DMAE N-oxide and N,N-dimethylglycine; the carcinogen, N-N-dimethylnitrosamine, was not detected. The pattern of disposition of [14C]choline following gavage administration was similar to that of [14C]DMAE. Prior treatment with DMAE had minimal effects on choline disposition. The pattern of disposition of [14C]DMAE and [14C]choline following IV administration was similar to gavage administration. There were minimal dose-, sex- or species-related effects following gavage or IV administration of [14C]DMAE or [14C]choline. Data from the current study did not support previous reports that: 1) DMAE alters choline uptake and distribution, or 2) that DMAE is converted into choline in vivo.
Assuntos
Colina/administração & dosagem , Colina/metabolismo , Deanol/administração & dosagem , Deanol/metabolismo , Administração Intravenosa , Administração Oral , Animais , Dimetilnitrosamina/metabolismo , Feminino , Masculino , Camundongos , Ratos , Ratos Wistar , Distribuição Tecidual/fisiologiaRESUMO
Fullerene C60 is used in a variety of industrial and consumer capacities. As part of a comprehensive evaluation of the toxicity of fullerene C60 by the National Toxicology Program, the disposition following intratracheal (IT) instillation and intravenous (IV) administration of 1 or 5 mg/kg b.wt. fullerene C60 was investigated in male Fischer 344 rats. Following IT instillation, fullerene C60 was detected in the lung as early as 0.5 h post-exposure with minimal clearance over the 168 h period; the concentration increased ≥20-fold with a 5-fold increase in the dose. Fullerene C60 was not detected in extrapulmonary tissues. Following IV administration, fullerene C60 was rapidly eliminated from the blood and was undetectable after 0.5 h post-administration. The highest tissue concentrations of fullerene C60 occurred in the liver, followed by the spleen, lung and kidney. Fullerene C60 was cleared slowly from the kidney and the lung with estimated half-lives of 24 and 139 h, respectively. The liver concentration of fullerene C60 did not change much with time; over 90% of the fullerene C60 remained there over the study duration up to 168 h. Fullerene C60 was also not detected in urine or feces. These data support the hypothesis that fullerene C60 accumulates in the body and therefore has the potential to induce detrimental health effects following exposure.
Assuntos
Fulerenos/administração & dosagem , Fulerenos/farmacocinética , Administração por Inalação , Administração Intravenosa , Animais , Cromatografia Líquida , Fulerenos/química , Masculino , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Ratos Endogâmicos F344 , Distribuição TecidualRESUMO
Sulfolane is a solvent used in industrial refining with identified environmental exposure in drinking water. Due to potential large species differences, the National Toxicology Program (NTP) conducted 28-day toxicity studies in male and female Hsd:Sprague Dawley® SD® rats, B6C3F1/N mice, and Hartley guinea pigs. A wide dose range of 0, 1, 10, 30, 100, 300, and 800 mg/kg was administered via gavage. Histopathology, clinical pathology, and organ weights were evaluated after 28 days of exposure. In addition, plasma concentrations of sulfolane were evaluated 2 and 24 h after the last dose. Increased mortality was observed in the highest dose group of guinea pigs and mice while decreased body weight was observed in rats compared to controls. Histopathological lesions were observed in the kidney (male rat), stomach (male mice), esophagus (male and female guinea pigs), and nose (male guinea pigs). Plasma concentrations were generally higher in rats and guinea pigs compared to mice with evidence of saturated clearance at higher doses. Male rats appear to be the most sensitive with hyaline droplet accumulation occurring at all doses, although the human relevance of this finding is questionable.