Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Mol Cell ; 68(2): 350-360.e7, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053958

RESUMO

The proper location and timing of Dnmt1 activation are essential for DNA methylation maintenance. We demonstrate here that Dnmt1 utilizes two-mono-ubiquitylated histone H3 as a unique ubiquitin mark for its recruitment to and activation at DNA methylation sites. The crystal structure of the replication foci targeting sequence (RFTS) of Dnmt1 in complex with H3-K18Ub/23Ub reveals striking differences to the known ubiquitin-recognition structures. The two ubiquitins are simultaneously bound to the RFTS with a combination of canonical hydrophobic and atypical hydrophilic interactions. The C-lobe of RFTS, together with the K23Ub surface, also recognizes the N-terminal tail of H3. The binding of H3-K18Ub/23Ub results in spatial rearrangement of two lobes in the RFTS, suggesting the opening of its active site. Actually, incubation of Dnmt1 with H3-K18Ub/23Ub increases its catalytic activity in vitro. Our results therefore shed light on the essential role of a unique ubiquitin-binding module in DNA methylation maintenance.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , Metilação de DNA , Histonas/química , Ubiquitina/química , Animais , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína , Ubiquitina/genética , Ubiquitina/metabolismo , Xenopus laevis
2.
J Biol Chem ; 299(9): 105165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595872

RESUMO

Attachment of polyubiquitin (poly-Ub) chains to proteins is a major posttranslational modification in eukaryotes. Linear ubiquitin chain assembly complex, consisting of HOIP (HOIL-1-interacting protein), HOIL-1L (heme-oxidized IRP2 Ub ligase 1), and SHARPIN (Shank-associated RH domain-interacting protein), specifically synthesizes "head-to-tail" poly-Ub chains, which are linked via the N-terminal methionine α-amino and C-terminal carboxylate of adjacent Ub units and are thus commonly called "linear" poly-Ub chains. Linear ubiquitin chain assembly complex-assembled linear poly-Ub chains play key roles in immune signaling and suppression of cell death and have been associated with immune diseases and cancer; HOIL-1L is one of the proteins known to selectively bind linear poly-Ub via its Npl4 zinc finger (NZF) domain. Although the structure of the bound form of the HOIL-1L NZF domain with linear di-Ub is known, several aspects of the recognition specificity remain unexplained. Here, we show using NMR and orthogonal biophysical methods, how the NZF domain evolves from a free to the specific linear di-Ub-bound state while rejecting other potential Ub species after weak initial binding. The solution structure of the free NZF domain revealed changes in conformational stability upon linear Ub binding, and interactions between the NZF core and tail revealed conserved electrostatic contacts, which were sensitive to charge modulation at a reported phosphorylation site: threonine-207. Phosphomimetic mutations reduced linear Ub affinity by weakening the integrity of the linear di-Ub-bound conformation. The described molecular determinants of linear di-Ub binding provide insight into the dynamic aspects of the Ub code and the NZF domain's role in full-length HOIL-1L.


Assuntos
Ubiquitina , Ubiquitinas , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Conformação Molecular , Dedos de Zinco , Ubiquitinação
3.
Biochemistry ; 60(8): 573-583, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33616406

RESUMO

Polyubiquitin is a multifunctional protein tag formed by the covalent conjugation of ubiquitin molecules. Due to the high rigidity of the ubiquitin fold, the ubiquitin moieties in a polyubiquitin chain appear to be structurally equivalent to each other. It is therefore unclear how a specific ubiquitin moiety in a chain may be preferentially recognized by some proteins, such as the kinase PINK1. Here we show that there is structural dynamic heterogeneity in the two ubiquitin moieties of K48-linked diubiquitin by NMR spectroscopic analyses. Our analyses capture subunit-asymmetric structural fluctuations that are not directly related to the closed-to-open transition of the two ubiquitin moieties in diubiquitin. Strikingly, these newly identified heterogeneous structural fluctuations may be linked to an increase in susceptibility to phosphorylation by PINK1. Coupled with the fact that there are almost no differences in static tertiary structure among ubiquitin moieties in a chain, the observed subunit-specific structural fluctuations may be an important factor that distinguishes individual ubiquitin moieties in a chain, thereby aiding both efficiency and specificity in post-translational modifications.


Assuntos
Poliubiquitina/química , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Humanos , Modelos Moleculares , Fosforilação , Poliubiquitina/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Quinases/metabolismo
4.
J Am Chem Soc ; 143(28): 10604-10613, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232041

RESUMO

Formation of protein aggregates or fibrils entails the conversion of soluble native protein monomers via multiple molecular states. No spectroscopic techniques have succeeded in capturing the transient molecular-scale events of fibrillation in situ. Here we report residue- and state-specific real-time monitoring of the fibrillation of amyotrophic lateral sclerosis-related SOD1 by rheology NMR (Rheo-NMR) spectroscopy. Under moderately denaturing conditions, where NMR signals of folded and unfolded monomeric SOD1 are simultaneously observable, the cross-peak intensities of folded monomeric SOD1 decreased faster than those of the unfolded species, and a 310-helix in folded SOD1 was deformed prior to global unfolding. Furthermore, real-time protein dynamics analysis identified residues involved in the core structure formation of SOD1 oligomers. Our findings provide insight into local and global unfolding events in SOD1 and fibril formation. This Rheo-NMR analysis will be applicable not only to atomic-level monitoring of other amyloidogenic proteins but also to quantification of shear-induced structural changes of non-amyloidogenic proteins and elucidation of shear-enhanced chemical phenomena such as viscosity increase and crystallization of various solution-state compounds.

5.
J Am Chem Soc ; 143(31): 11982-11993, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338526

RESUMO

Adenosine triphosphate (ATP) is an immensely well-studied metabolite serving multiple key biochemical roles as the major chemical energy currency in living systems, a building block of ribonucleic acids, and a phosphoryl group donor in kinase-mediated signaling. Intriguingly, ATP has been recently proposed to act as a hydrotrope that inhibits aggregation of amyloidogenic proteins; however, the underlying mechanism and the general physicochemical effect that coexistence with ATP exerts on proteins remain unclear. By combining NMR spectroscopy and MD simulations, here we observed weak but unambiguously measurable and concentration-dependent noncovalent interactions between ATP and various proteins. The interactions were most pronounced for an intrinsically disordered protein (α-synuclein) and for residues in flexible regions (e.g., loops or termini) of two representative folded proteins (ubiquitin and the dimeric ubiquitin-binding domain of p62). As shown by solution NMR, a consequence of the ATP-protein interaction was altered hydration of solvent-exposed residues in the protein. The observation that ATP interacted with all three proteins suggests that ATP is a general nonspecific binder of proteins. Several complementary biophysical methods further confirmed that, at physiological concentrations of ∼5-10 mM, ATP starts to form oligomeric states via magnesium-chelating and chelation-independent mechanisms, in agreement with previous studies. Although the observed ATP-protein interaction was relatively weak overall, the high ratio of ATP (monomeric free ATP, mono- and divalent ion-bound ATP, oligomeric and chelated ATP) to proteins in cells suggests that most proteins are likely to encounter transient interactions with ATP (and chemically similar metabolites) that confer metabolite-mediated protein surface protection.


Assuntos
Trifosfato de Adenosina/química , Proteína Sequestossoma-1/química , Ubiquitina/química , alfa-Sinucleína/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular
6.
J Am Chem Soc ; 142(16): 7542-7554, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32285668

RESUMO

The rotation of an object cannot be fully tracked without understanding a set of three angles, namely, roll, pitch, and yaw. Tracking these angles as a three-degrees-of-freedom (3-DoF) rotation is a fundamental measurement, facilitating, for example, attitude control of a ship, image stabilization to reduce camera shake, and self-driving cars. Until now, however, there has been no method to track 3-DoF rotation to measure nanometer-scale dynamics in biomolecules and live cells. Here we show that 3-DoF rotation of biomolecules can be visualized via nitrogen-vacancy centers in a fluorescent nanodiamond using a tomographic vector magnetometry technique. We demonstrate application of the method to three different types of biological systems. First, we tracked the rotation of a single molecule of the motor protein F1-ATPase by attaching a nanodiamond to the γ-subunit. We visualized the 3-step rotation of the motor in 3D space and, moreover, a delay of ATP binding or ADP release step in the catalytic reaction. Second, we attached a nanodiamond to a membrane protein in live cells to report on cellular membrane dynamics, showing that 3D rotational motion of the membrane protein correlates with intracellular cytoskeletal density. Last, we used the method to track nonrandom motions in the intestine of Caenorhabditis elegans. Collectively, our findings show that the method can record nanoscale 3-DoF rotation in vitro, in cells, and even in vivo. 3-DoF rotation tracking introduces a new perspective on microscopic biological samples, revealing in greater detail the functional mechanisms due to nanoscale dynamics in molecules and cells.


Assuntos
Imageamento Tridimensional/métodos , Nanoestruturas/química , Algoritmos , Rotação
7.
Biochem Biophys Res Commun ; 529(2): 418-424, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703445

RESUMO

Ubiquitination is one of the major post-translational modifications and entails conjugation of ubiquitin molecules to target proteins. To make free ubiquitin molecules available for conjugation, in cells ubiquitin is not only synthesized de novo, but is also provided by cleaving off existing conjugated ubiquitin molecules, so-called deubiquitination reaction. Therefore, intracellular ubiquitin molecules are thought to be recycled, but the recycling frequency remains elusive. The main reason for the lack of such mechanistic details is that the original and recycled ubiquitin molecules are indistinguishable in their chemical and physical properties. To tackle this issue, here we applied 18O-labeling to trace how ubiquitin is recycled in a simultaneous ubiquitination/deubiquitination reaction (ubiquitin cycle reaction). Because deubiquitination is a hydrolysis reaction, the two 16O atoms of the C-terminal carboxy group of a ubiquitin molecule can be exchanged with 18O atoms by deubiquitination in 18O-labeled aqueous solution. By using quantitative mass spectrometry, we detected 18O atom incorporation into the C-terminal carboxy group of ubiquitin in the course of a deubiquitination reaction, in addition, we were able to quantify the 18O-incorporation in a ubiquitin cycle reaction. Unexpectedly, kinetic analysis suggested that ubiquitination reactivity was accelerated in the presence of a deubiquitinating enzyme. Collectively, we have established a quantitative method to trace ubiquitin cycle reactions by analyzing deubiquitination-associated 18O-incorporation into ubiquitin.


Assuntos
Ubiquitinação , Humanos , Cinética , Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/metabolismo , Ubiquitina/análise , Ubiquitina/metabolismo
8.
J Am Soc Nephrol ; 30(9): 1587-1603, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266820

RESUMO

BACKGROUND: TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Citoesqueleto/ultraestrutura , Glomerulosclerose Segmentar e Focal/genética , Canal de Cátion TRPC6/genética , Actinas/ultraestrutura , Animais , Sítios de Ligação , Calmodulina/genética , Mutação com Ganho de Função , Glomerulosclerose Segmentar e Focal/metabolismo , Células HEK293 , Humanos , Camundongos , Fenótipo , Podócitos , Domínios Proteicos , Canal de Cátion TRPC6/ultraestrutura
9.
Angew Chem Int Ed Engl ; 58(22): 7284-7288, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30938016

RESUMO

Proteins in living cells interact specifically or nonspecifically with an enormous number of biomolecules. To understand the behavior of proteins under intracellular crowding conditions, it is indispensable to observe their three-dimensional (3D) structures at the atomic level in a physiologically natural environment. We demonstrate the first de novo protein structure determinations in eukaryotes with the sf9 cell/baculovirus system using NMR data from living cells exclusively. The method was applied to five proteins, rat calmodulin, human HRas, human ubiquitin, T. thermophilus HB8 TTHA1718, and Streptococcus protein G B1 domain. In all cases, we could obtain structural information from well-resolved in-cell 3D nuclear Overhauser effect spectroscopy (NOESY) data, suggesting that our method can be a standard tool for protein structure determinations in living eukaryotic cells. For three proteins, we achieved well-converged 3D structures. Among these, the in-cell structure of protein G B1 domain was most accurately determined, demonstrating that a helix-loop region is tilted away from a ß-sheet compared to the conformation in diluted solution.


Assuntos
Algoritmos , Proteínas de Bactérias/química , Calmodulina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Proto-Oncogênicas p21(ras)/química , Ubiquitina/química , Animais , Humanos , Modelos Moleculares , Conformação Proteica em Folha beta , Ratos , Streptococcus/metabolismo , Thermus thermophilus/metabolismo
10.
Bioconjug Chem ; 29(8): 2786-2792, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29975511

RESUMO

Fluorescent nanodiamonds (FNDs) have been attracting much attention as promising therapeutic agents and probes for bioimaging and nanosensing. For their biological applications, several hydrophilizing methods to enhance FND colloidal stability have been developed to suppress their aggregation and the nonspecific adsorption to biomolecules in complex biomedical environments. However, these methods involve several complicated synthetic and purification steps, which prohibit the use of FNDs for bioapplications by biologists. In this study, we describe a simple one-pot FND hydrophilization method that comprises coating of the surface of the nanoparticles with COOH-terminated hyperbranched polyglycerol (HPG-COOH). HPG-COOH-coated FNDs (FND-HPG-COOHs) were found to exhibit excellent dispersibility under physiological conditions despite the thinness of the 5 nm HPG-COOH layer. Biotinylated FND-HPG-COOHs specifically captured avidin molecules in the absence of nonspecific protein adsorption. Moreover, we demonstrated that FND-HPG-COOHs conjugated with antibodies can be used to selectively target integrins in fixed HeLa cells. In addition, intracellular temperature changes were measured via optically detected magnetic resonance using FND-HPG-COOHs conjugated with mitochondrial localization signal peptides. Our one-pot synthetic method will encourage the broad use of FNDs among molecular and cellular biologists and pave the way for extensive biological and biomedical applications of FNDs.


Assuntos
Corantes Fluorescentes/química , Nanodiamantes/química , Células HeLa , Humanos
11.
J Biol Chem ; 291(32): 16879-91, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27284007

RESUMO

Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Animais , Ativação Enzimática , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Domínios Proteicos , Ratos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
J Biomol NMR ; 68(1): 41-52, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28474302

RESUMO

Fourier transform NMR spectroscopy has provided unprecedented insight into the structure, interaction and dynamic motion of proteins and nucleic acids. Conventional biomolecular NMR relies on the acquisition of three-dimensional and four-dimensional (4D) data matrices to establish correlations between chemical shifts in the frequency domains F 1, F 2, F 3 and F 1, F 2, F 3, F 4 respectively. While rich in information, these datasets require a substantial amount of acquisition time, are visually highly unintuitive, require expert knowledge to process, and sample dark and bright regions of the frequency domains equally. Here, we present an alternative approach to obtain multidimensional chemical shift correlations for biomolecules. This strategy focuses on one narrow frequency range, F 1 F 2, at a time and records the resulting F 3 F 4 correlation spectrum by two-dimensional NMR. As a result, only regions of the frequency domain that contain signals in F 1 F 2 ("bright regions") are sampled. F 1 F 2 selection is achieved by Hartmann-Hahn cross-polarization using weak radio frequency fields. This approach reveals information equivalent to that of a conventional 4D experiment, while the dimensional reduction may shorten the total acquisition time and simplifies spectral processing, interpretation and comparative analysis. Potential applicability of the F 1 F 2-selective approach is illustrated by de novo assignment, structural and dynamics studies of ubiquitin and fatty-acid binding protein 4 (FABP4). Further extension of this concept may spawn new selective NMR experiments to aid studies of site-specific structural dynamics, protein-protein interactions and allosteric modulation of protein structure.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Proteínas de Ligação a Ácido Graxo/química , Análise de Fourier , Humanos , Marcação por Isótopo , Conformação Proteica , Ubiquitina/química
13.
J Biomol NMR ; 67(3): 201-209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28243767

RESUMO

It is becoming increasingly apparent that proteins are not static entities and that their function often critically depends on accurate sampling of multiple conformational states in aqueous solution. Accordingly, the development of methods to study conformational states in proteins beyond their ground-state structure ("excited states") has crucial biophysical importance. Here we investigate experimental schemes for optimally probing chemical exchange processes in proteins on the micro- to millisecond timescale by 15N R 1ρ relaxation dispersion. The schemes use selective Hartmann-Hahn cross-polarization (CP) transfer for excitation, and derive peak integrals from 1D NMR spectra (Korzhnev et al. in J Am Chem Soc 127:713-721, 2005; Hansen et al. in J Am Chem Soc 131:3818-3819, 2009). Simulation and experiment collectively show that in such CP-based schemes care has to be taken to achieve accurate suppression of undesired off-resonance coherences, when using weak spin-lock fields. This then (i) ensures that relaxation dispersion profiles in the absence of chemical exchange are flat, and (ii) facilitates extraction of relaxation dispersion profiles in crowded regions of the spectrum. Further improvement in the quality of the experimental data is achieved by recording the free-induction decays in an interleaved manner and including a heating-compensation element. The reported considerations will particularly benefit the use of CP-based R 1ρ relaxation dispersion to analyze conformational exchange processes in larger proteins, where resonance line overlap becomes the main limiting factor.


Assuntos
Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas/química , Marcação por Isótopo , Isótopos de Nitrogênio
14.
Anal Chem ; 89(14): 7286-7290, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28665116

RESUMO

Shear stress can induce structural deformation of proteins, which might result in aggregate formation. Rheo-NMR spectroscopy has the potential to monitor structural changes in proteins under shear stress at the atomic level; however, existing Rheo-NMR methodologies have insufficient sensitivity to probe protein structure and dynamics. Here we present a simple and versatile approach to Rheo-NMR, which maximizes sensitivity by using a spectrometer equipped with a cryogenic probe. As a result, the sensitivity of the instrument ranks highest among the Rheo-NMR spectrometers reported so far. We demonstrate that the newly developed Rheo-NMR instrument can acquire high-quality relaxation data for a protein under shear stress and can trace structural changes in a protein during fibril formation in real time. The described approach will facilitate rheological studies on protein structural deformation, thereby aiding a physical understanding of shear-induced amyloid fibril formation.


Assuntos
Ubiquitina/análise , Humanos , Espectroscopia de Ressonância Magnética , Reologia
15.
Chembiochem ; 18(10): 951-959, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28198587

RESUMO

Two features of meso-Aryl-substituted expanded porphyrins suggest suitability as theranostic agents. They have excellent absorption in near infrared (NIR) region, and they offer the possibility of introduction of multiple fluorine atoms at structurally equivalent positions. Here, hexaphyrin (hexa) was synthesized from 2,6-bis(trifluoromethyl)-4-formyl benzoate and pyrrole and evaluated as a novel expanded porphyrin with the above features. Under NIR illumination hexa showed intense photothermal and weak photodynamic effects, which were most likely due to its low excited states, close to singlet oxygen. The sustained photothermal effect caused ablation of cancer cells more effectively than the photodynamic effect of indocyanine green (a clinical dye). In addition, hexa showed potential for use in the visualization of tumors by 19 F magnetic resonance imaging (MRI), because of the multiple fluorine atoms. Our results strongly support the utility of expanded porphyrins as theranostic agents in both photothermal therapy and 19 F MRI.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/métodos , Hipertermia Induzida , Fototerapia , Porfirinas/química , Neoplasias da Bexiga Urinária/terapia , Sobrevivência Celular , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Nanomedicina Teranóstica , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
16.
Bioinformatics ; 32(16): 2539-41, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153625

RESUMO

UNLABELLED: We introduce here a novel acquisition and processing methodology for cross-polarization based 1D rotating-frame relaxation dispersion NMR experiments. This easy-to-use protocol greatly facilitates the screening, acquisition, processing and model fitting of large on- and off-resonance R1ρ relaxation dispersion NMR datasets in an automated manner for the analysis of chemical exchange phenomena in biomolecules. AVAILABILITY AND IMPLEMENTATION: The Amaterasu package including the spreadsheet, Bruker pulse programs and analysis software is available at www.moleng.kyoto-u.ac.jp/∼moleng_01/amaterasu CONTACT: : sugase@moleng.kyoto-u.ac.jp.


Assuntos
Espectroscopia de Ressonância Magnética , Software , Algoritmos , Simulação por Computador , Modelos Teóricos
17.
Nucleic Acids Res ; 43(21): 10200-12, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26319017

RESUMO

The α, ß and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1's chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg(2+) or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Homólogo 5 da Proteína Cromobox , Histonas/química , Humanos , Lisina/metabolismo , Magnésio/química , Metilação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Multimerização Proteica
18.
Proc Natl Acad Sci U S A ; 111(48): 17236-41, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404296

RESUMO

A major goal of neuroscience studies is to identify the neurons and molecules responsible for memory. Mechanosensory habituation in Caenorhabditis elegans is a simple form of learning and memory, in which a circuit of several sensory neurons and interneurons governs behavior. However, despite the usefulness of this paradigm, there are hardly any systems for rapid and accurate behavioral genetic analysis. Here, we developed a multiplexed optical system to genetically analyze C. elegans mechanosensory habituation, and identified two interneurons involved in memory formation. The system automatically trains large populations of animals and simultaneously quantifies the behaviors of various strains by optically discriminating between transgenic and nontransgenic animals. Biochemical and cell-specific behavioral analyses indicated that phosphorylation of cyclic AMP response element-binding protein (CREB), a factor known to regulate memory allocation, was facilitated during training and this phosphorylation in AVA and AVD interneurons was required for habituation. These interneurons are a potential target for cell-specific exploration of the molecular substrates of memory.


Assuntos
Caenorhabditis elegans/fisiologia , Habituação Psicofisiológica/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Habituação Psicofisiológica/genética , Processamento de Imagem Assistida por Computador , Immunoblotting , Interneurônios/metabolismo , Interneurônios/fisiologia , Locomoção/genética , Locomoção/fisiologia , Modelos Neurológicos , Mutação , Neurônios/metabolismo , Fosforilação , Estimulação Luminosa/instrumentação , Estimulação Luminosa/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 18(6)2017 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-28555012

RESUMO

Most intracellular proteins are subjected to post-translational modification by ubiquitin. Accordingly, it is of fundamental importance to investigate the biological and physicochemical effects of ubiquitylation on substrate proteins. However, preparation of ubiquitylated proteins by an enzymatic synthesis bears limitations in terms of yield and site-specificity. Recently established chemical ubiquitylation methodologies can overcome these problems and provide a new understanding of ubiquitylation. Herein we describe the recent chemical ubiquitylation procedures with a focus on the effects of ubiquitylation on target proteins revealed by the synthetic approach.


Assuntos
Ubiquitina/metabolismo , Humanos , Processamento de Proteína Pós-Traducional/genética , Proteínas/genética , Proteínas/metabolismo , Ubiquitina/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
20.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143789

RESUMO

Amyloid fibril formation is associated with numerous neurodegenerative diseases. To elucidate the mechanism of fibril formation, the thioflavin T (ThT) fluorescence assay is widely used. ThT is a fluorescent dye that selectively binds to amyloid fibrils and exhibits fluorescence enhancement, which enables quantitative analysis of the fibril formation process. However, the detailed binding mechanism has remained unclear. Here we acquire real-time profiles of fibril formation of superoxide dismutase 1 (SOD1) using high-sensitivity Rheo-NMR spectroscopy and detect weak and strong interactions between ThT and SOD1 fibrils in a time-dependent manner. Real-time information on the interaction between ThT and fibrils will contribute to the understanding of the binding mechanism of ThT to fibrils. In addition, our method provides an alternative way to analyze fibril formation.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Espectroscopia de Ressonância Magnética , Tiazóis/metabolismo , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/ultraestrutura , Benzotiazóis , Ligação Proteica , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/ultraestrutura , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA