Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Semin Immunol ; 51: 101472, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648815

RESUMO

The relevance of monocyte and macrophage reservoirs in virally suppressed people with HIV (vsPWH) has previously been debatable. Macrophages were assumed to have a moderate life span and lack self-renewing potential. However, recent studies have challenged this dogma and now suggest an important role of these cell as long-lived HIV reservoirs. Lentiviruses have a long-documented association with macrophages and abundant evidence exists that macrophages are important target cells for HIV in vivo. A critical understanding of HIV infection, replication, and latency in macrophages is needed in order to determine the appropriate method of measuring and eliminating this cellular reservoir. This review provides a brief discussion of the biology and acute and chronic infection of monocytes and macrophages, with a more substantial focus on replication, latency and measurement of the reservoir in cells of myeloid origin.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Humanos , Macrófagos , Monócitos , Replicação Viral
2.
Am J Pathol ; 192(2): 195-207, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767812

RESUMO

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Assuntos
COVID-19/patologia , Animais , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Masculino , Mesocricetus , SARS-CoV-2
3.
Psychosom Med ; 84(8): 966-975, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162063

RESUMO

OBJECTIVE: Simian immunodeficiency virus (SIV) infection of macaques recapitulates many aspects of HIV pathogenesis and is similarly affected by both genetic and environmental factors. Psychosocial stress is associated with immune system dysregulation and worse clinical outcomes in people with HIV. This study assessed the impact of single housing, as a model of psychosocial stress, on innate immune responses of pigtailed macaques ( Macaca nemestrina ) during acute SIV infection. METHODS: A retrospective analysis of acute SIV infection of 2- to si6-year-old male pigtailed macaques was performed to compare the innate immune responses of socially ( n = 41) and singly ( n = 35) housed animals. Measures included absolute monocyte count and subsets, and in a subset ( n ≤ 18) platelet counts and activation data. RESULTS: SIV infection resulted in the expected innate immune parameter changes with a modulating effect from housing condition. Monocyte number increased after infection for both groups, driven by classical monocytes (CD14 + CD16 - ), with a greater increase in socially housed animals (227%, p < .001, by day 14 compared with preinoculation time points). Platelet numbers recovered more quickly in the socially housed animals. Platelet activation (P-selectin) increased by 65% ( p = .004) and major histocompatibility complex class I surface expression by 40% ( p = .009) from preinoculation only in socially housed animals, whereas no change in these measures occurred in singly housed animals. CONCLUSIONS: Chronic psychosocial stress produced by single housing may play an immunomodulatory role in the innate immune response to acute retroviral infection. Dysregulated innate immunity could be one of the pathways by which psychosocial stress contributes to immune suppression and increased disease severity in people with HIV.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Habitação , Imunidade Inata , Macaca nemestrina , Masculino , Selectina-P/farmacologia , Estudos Retrospectivos , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/genética , Estresse Psicológico
4.
J Infect Dis ; 224(12): 2113-2121, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33970274

RESUMO

BACKGROUND: Although social distancing is a key public health response during viral pandemics, psychosocial stressors, such as social isolation, have been implicated in adverse health outcomes in general [1] and in the context of infectious disease, such as human immunodeficiency virus (HIV) [2, 3]. A comprehensive understanding of the direct pathophysiologic effects of psychosocial stress on viral pathogenesis is needed to provide strategic and comprehensive care to patients with viral infection. METHODS: To determine the effect of psychosocial stress on HIV pathogenesis during acute viral infection without sociobehavioral confounders inherent in human cohorts, we compared commonly measured parameters of HIV progression between singly (n = 35) and socially (n = 41) housed simian immunodeficiency virus (SIV)-infected pigtailed macaques (Macaca nemestrina). RESULTS: Singly housed macaques had a higher viral load in the plasma and cerebrospinal fluid and demonstrated greater CD4 T-cell declines and more CD4 and CD8 T-cell activation compared with socially housed macaques throughout acute SIV infection. CONCLUSIONS: These data demonstrate that psychosocial stress directly impacts the pathogenesis of acute SIV infection and imply that it may act as an integral variable in the progression of HIV infection and potentially of other viral infections.


Assuntos
Infecções por HIV , HIV/patogenicidade , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Estresse Psicológico , Animais , Linfócitos T CD4-Positivos/imunologia , Humanos , Ativação Linfocitária , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/psicologia , Carga Viral
5.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118264

RESUMO

Understanding the cellular and anatomical sites of latent virus that contribute to human immunodeficiency virus (HIV) rebound is essential for eradication. In HIV-positive patients, CD4+ T lymphocytes comprise a well-defined functional latent reservoir, defined as cells containing transcriptionally silent genomes able to produce infectious virus once reactivated. However, the persistence of infectious latent virus in CD4+ T cells in compartments other than blood and lymph nodes is unclear. Macrophages (Mϕ) are infected by HIV/simian immunodeficiency virus (SIV) and are likely to carry latent viral genomes during antiretroviral therapy (ART), contributing to the reservoir. Currently, the gold standard assay used to measure reservoirs containing replication-competent virus is the quantitative viral outgrowth assay (QVOA). Using an SIV-macaque model, the CD4+ T cell and Mϕ functional latent reservoirs were measured in various tissues using cell-specific QVOAs. Our results showed that blood, spleen, and lung in the majority of suppressed animals contain latently infected Mϕs. Surprisingly, the numbers of CD4+ T cells, monocytes, and Mϕs carrying infectious genomes in blood and spleen were at comparable frequencies (∼1 infected cell per million). We also demonstrate that ex vivo viruses produced in the Mϕ QVOA are capable of infecting activated CD4+ T cells. These results strongly suggest that latently infected tissue Mϕs can reestablish productive infection upon treatment interruption. This study provides the first comparison of CD4+ T cell and Mϕ functional reservoirs in a macaque model. It is the first confirmation of the persistence of latent genomes in monocytes in blood and Mϕs in the spleen and lung of SIV-infected ART-suppressed macaques. Our results demonstrate that transcriptionally silent genomes in Mϕs can contribute to viral rebound after ART interruption and should be considered in future HIV cure strategies.IMPORTANCE This study suggests that CD4+ T cells found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. In addition, this study demonstrates that macrophages in tissues are another cellular reservoir for SIV and may contribute to viral rebound after treatment interruption. This new insight into the size and location of the SIV reservoir could have great implications for HIV-infected individuals and should be taken into consideration for the development of future HIV cure strategies.


Assuntos
Antirretrovirais/administração & dosagem , Linfócitos T CD4-Positivos/virologia , Macrófagos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral , Animais , Células Sanguíneas/virologia , Células Cultivadas , Pulmão/virologia , Macaca , Vírus da Imunodeficiência Símia/isolamento & purificação , Baço/virologia
6.
Am J Pathol ; 188(1): 125-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229308

RESUMO

A retrospective neuropathologic review of 30 SIV-infected pigtailed macaques receiving combination antiretroviral therapy (cART) was conducted. Seventeen animals with lymphocyte-dominant inflammation in the brain and/or meninges that clearly was morphologically distinct from prototypic SIV encephalitis and human immunodeficiency virus encephalitis were identified. Central nervous system (CNS) infiltrates in cART-treated macaques primarily comprised CD20+ B cells and CD3+ T cells with fewer CD68+ macrophages. Inflammation was associated with low levels of SIV RNA in the brain as shown by in situ hybridization, and generally was observed in animals with episodes of cerebrospinal fluid (CSF) viral rebound or sustained plasma and CSF viremia during treatment. Although the lymphocytic CNS inflammation in these macaques shared morphologic characteristics with uncommon immune-mediated neurologic disorders reported in treated HIV patients, including CNS immune reconstitution inflammatory syndrome and neurosymptomatic CSF escape, the high prevalence of CNS lesions in macaques suggests that persistent adaptive immune responses in the CNS also may develop in neuroasymptomatic or mildly impaired HIV patients yet remain unrecognized given the lack of access to CNS tissue for histopathologic evaluation. Continued investigation into the mechanisms and outcomes of CNS inflammation in cART-treated, SIV-infected macaques will advance our understanding of the consequences of residual CNS HIV replication in patients on cART, including the possible contribution of adaptive immune responses to HIV-associated neurocognitive disorders.


Assuntos
Antirretrovirais/uso terapêutico , Encéfalo/patologia , Encefalite/patologia , Linfócitos/patologia , Meningite/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Animais , Encefalite/complicações , Inflamação/patologia , Macaca nemestrina , Masculino , Meningite/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia , Carga Viral
7.
Curr Top Microbiol Immunol ; 417: 111-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770863

RESUMO

Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in brain, lung, and heart causes tissue-specific diseases that are mostly observed during severe immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ lymphocytes is the main focus of research and concern when HIV eradication efforts are considered. However, myeloid cells in tissues are long-lived and have not been routinely examined as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an additional latent reservoir of HIV that should be considered during HIV eradication strategies.


Assuntos
Sistema Nervoso Central/virologia , Modelos Animais de Doenças , Macaca mulatta/virologia , Macrófagos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral , Animais , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , Humanos , Carga Viral
8.
Am J Pathol ; 187(3): 589-604, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28056337

RESUMO

Enteropathy in HIV infection is not eliminated with combination antiretroviral therapy and is possibly linked to microbial translocation. We used a rapidly progressing SIV/pigtailed macaque model of HIV to examine enteropathy and microbial translocation. Histologic evidence of intestinal disease was observed in only half of infected macaques during late-stage infection (LSI). Combination antiretroviral therapy initiated during acute infection prevented intestinal disease. In the ileum and colon, enteropathy was associated with increased caspase-3 staining, decreased CD3+ T cells, and increased SIV-infected cells. CD3+ T cells were preserved in LSI animals without intestinal disease, and levels of CD3 staining in all LSI animals strongly correlated with the number of infected cells in the intestine and plasma viral load. Unexpectedly, there was little evidence of microbial translocation as measured by soluble CD14, soluble CD163, lipopolysaccharide binding protein, and microbial 16s ribosomal DNA. Loss of epithelial integrity indicated by loss of the tight junction protein claudin-3 was not observed during acute infection despite significantly fewer T cells. Claudin-3 was reduced in LSI animals with severe intestinal disease but did not correlate with increased microbial translocation. LSI animals that did not develop intestinal disease had increased T-cell intracytoplasmic antigen 1-positive cytotoxic T lymphocytes, suggesting a robust adaptive cytotoxic T-lymphocyte response may, in part, confer resilience to SIV-induced intestinal damage.


Assuntos
Síndrome da Imunodeficiência Adquirida/patologia , Enteropatia por HIV/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Doença Aguda , Animais , Antígenos CD/metabolismo , Terapia Antirretroviral de Alta Atividade , Caspase 3/metabolismo , Claudina-3/metabolismo , Colo/enzimologia , Colo/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Células Epiteliais/metabolismo , Enteropatia por HIV/sangue , Enteropatia por HIV/virologia , Íleo/enzimologia , Íleo/patologia , Imuno-Histoquímica , Intestinos/patologia , Macaca mulatta , Proteínas de Ligação a Poli(A)/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T/metabolismo , Carga Viral
9.
J Virol ; 90(12): 5643-5656, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27030272

RESUMO

UNLABELLED: Despite the success of combined antiretroviral therapy (ART), human immunodeficiency virus (HIV) infection remains a lifelong infection because of latent viral reservoirs in infected patients. The contribution of CD4(+) T cells to infection and disease progression has been extensively studied. However, during early HIV infection, macrophages in brain and other tissues are infected and contribute to tissue-specific diseases, such as encephalitis and dementia in brain and pneumonia in lung. The extent of infection of monocytes and macrophages has not been rigorously assessed with assays comparable to those used to study infection of CD4(+) T cells and to evaluate the number of CD4(+) T cells that harbor infectious viral genomes. To assess the contribution of productively infected monocytes and macrophages to HIV- and simian immunodeficiency virus (SIV)-infected cells in vivo, we developed a quantitative virus outgrowth assay (QVOA) based on similar assays used to quantitate CD4(+) T cell latent reservoirs in HIV- and SIV-infected individuals in whom the infection is suppressed by ART. Myeloid cells expressing CD11b were serially diluted and cocultured with susceptible cells to amplify virus. T cell receptor ß RNA was measured as a control to assess the potential contribution of CD4(+) T cells in the assay. Virus production in the supernatant was quantitated by quantitative reverse transcription-PCR. Productively infected myeloid cells were detected in blood, bronchoalveolar lavage fluid, lungs, spleen, and brain, demonstrating that these cells persist throughout SIV infection and have the potential to contribute to the viral reservoir during ART. IMPORTANCE: Infection of CD4(+) T cells and their role as latent reservoirs have been rigorously assessed; however, the frequency of productively infected monocytes and macrophages in vivo has not been similarly studied. Myeloid cells, unlike lymphocytes, are resistant to the cytopathic effects of HIV. Moreover, tissue-resident macrophages have the ability to self-renew and persist in the body for months to years. Thus, tissue macrophages, once infected, have the characteristics of a potentially stable viral reservoir. A better understanding of the number of productively infected macrophages is crucial to further evaluate the role of infected myeloid cells as a potential viral reservoir. In the study described here we compared the frequency of productively infected CD4(+) T cells and macrophages in an SIV-infected macaque model. We developed a critical assay that will allow us to quantitate myeloid cells containing viral genomes that lead to productive infection in SIV-infected macaques and assess the role of macrophages as potential reservoirs.


Assuntos
Linfócitos T CD4-Positivos/virologia , Genoma Viral , Macrófagos/virologia , Monócitos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Carga Viral , Animais , Antígeno CD11b/análise , Modelos Animais de Doenças , Reservatórios de Doenças/virologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Infecções por HIV/virologia , Humanos , Macaca mulatta , Reação em Cadeia da Polimerase em Tempo Real , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Replicação Viral
10.
Am J Pathol ; 186(8): 2068-2087, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27322772

RESUMO

The effects of HIV infection on spleen and its cellular subsets have not been fully characterized, particularly for macrophages in which diverse populations exist. We used an accelerated SIV-infected macaque model to examine longitudinal effects on T-cell and macrophage populations and their susceptibilities to infection. Substantial lymphoid depletion occurred, characterized by follicular burn out and a loss of CD3 T lymphocytes, which was associated with cellular activation and transient dysregulations in CD4/CD8 ratios and memory effector populations. In contrast, the loss of CD68 and CD163(+)CD68(+) macrophages and increase in CD163 cells was irreversible, which began during acute infection and persisted until terminal disease. Mac387 macrophages and monocytes were transiently recruited into spleen, but were not sufficient to mitigate the changes in macrophage subsets. Type I interferon, M2 polarizing genes, and chemokine-chemokine receptor signaling were up-regulated in spleen and drove macrophage alterations. SIV-infected T cells were numerous within the white pulp during acute infection, but were rarely observed thereafter. CD68, CD163, and Mac387 macrophages were highly infected, which primarily occurred in the red pulp independent of T cells. Few macrophages underwent apoptosis, indicating that they are a long-lasting target for HIV/SIV. Our results identify macrophages as an important contributor to HIV/SIV infection in spleen and in promoting morphologic changes through the loss of specific macrophage subsets that mediate splenic organization.


Assuntos
Macrófagos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Baço/imunologia , Baço/patologia , Linfócitos T/imunologia , Animais , Imuno-Histoquímica , Hibridização In Situ , Macaca nemestrina , Análise de Sequência com Séries de Oligonucleotídeos , Síndrome de Imunodeficiência Adquirida dos Símios/patologia
11.
Cytometry A ; 91(4): 364-371, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28323396

RESUMO

Polychromatic flow cytometry is a useful tool for monitoring circulating whole blood monocytes, although gating strategies often vary depending on the study. Increased analyses of the myeloid system have revealed monocytes to be more plastic than previously understood and uncovered changes among surface markers previously considered to be stable. The myeloid system has also been found to have disparate surface markers between mouse, human, and non-human primate studies, which further complicates examination between species. This study has found bright Toll-like receptor 2 (TLR2) expression to be a consistent surface marker of circulating whole blood monocytes in humans and two species of macaques. Furthermore, within our pigtailed macaque model of HIV-associated CNS disease, where monocyte surface markers have previously been shown to reorganize during acute infection, TLR2 remains stably expressed on the surface of classical, intermediate, and non-classical monocytes. Our findings demonstrate that TLR2 is a useful surface marker for including all monocytes during other phenotypic changes that may alter the expression of common surface receptors. These results provide a practical tool for studying all types of monocytes during inflammation and infection within humans and macaques. © 2017 International Society for Advancement of Cytometry.


Assuntos
Biomarcadores/análise , Monócitos/metabolismo , Receptor 2 Toll-Like/biossíntese , Animais , Citometria de Fluxo , Humanos , Macaca nemestrina , Receptor 2 Toll-Like/análise
12.
J Infect Dis ; 212(9): 1387-96, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25883388

RESUMO

BACKGROUND: Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. METHODS: Peripheral blood mononuclear cells or purified CD4(+) T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8(+) T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody. RESULTS: With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA. CONCLUSIONS: Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads.


Assuntos
Infecções por HIV/diagnóstico , HIV-1/isolamento & purificação , Carga Viral , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , HIV-1/crescimento & desenvolvimento , Humanos , Interleucina-2/sangue , Leucócitos Mononucleares/virologia , Macaca , Masculino , Camundongos , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/isolamento & purificação , Viremia/veterinária
13.
J Neurovirol ; 20(6): 591-602, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25227932

RESUMO

Effective combined antiretroviral therapy (cART) in HIV-infected patients has made HIV a treatable infection; however, debilitating HIV-associated neurocognitive disorders (HAND) can still affect approximately 50% of HIV-infected individuals even under cART. While cART has greatly reduced the prevalence of the most severe form of HAND, milder forms have increased in prevalence, leaving the total proportion of HIV-infected individuals suffering from HAND relatively unchanged. In this study, an in vitro drug screen identified fluconazole and paroxetine as protective compounds against HIV gp120 and Tat neurotoxicity. Using an accelerated, consistent SIV/macaque model of HIV-associated CNS disease, we tested the in vivo neuroprotective capabilities of combination fluconazole/paroxetine (FluPar) treatment. FluPar treatment protected macaques from SIV-induced neurodegeneration, as measured by neurofilament light chain in the CSF, APP accumulation in axons, and CaMKIIα in the frontal cortex, but did not significantly reduce markers of neuroinflammation or plasma or CNS viral loads. Since HIV and SIV neurodegeneration is often attributed to accompanying neuroinflammation, this study provides proof of concept that neuroprotection can be achieved even in the face of ongoing neuroinflammation and viral replication.


Assuntos
Fluconazol/farmacologia , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Paroxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/fisiopatologia , Complexo AIDS Demência/virologia , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Síndrome da Imunodeficiência Adquirida/fisiopatologia , Síndrome da Imunodeficiência Adquirida/virologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Humanos , Macaca nemestrina , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/genética , Neurônios/patologia , Neurônios/virologia , Cultura Primária de Células , Ratos , Síndrome de Imunodeficiência Adquirida dos Símios/líquido cefalorraquidiano , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
J Infect Dis ; 208(6): 874-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852120

RESUMO

Platelets are key participants in innate immune responses to pathogens. As a decrease in circulating platelet count is one of the initial hematologic indicators of human immunodeficiency virus (HIV) infection, we sought to determine whether decline in platelet number during acute infection results from decreased production, increased antibody-mediated destruction, or increased platelet activation in a simian immunodeficiency virus (SIV)/macaque model. During acute SIV infection, circulating platelets were activated with increased surface expression of P-selection, CD40L and major histocompatibility complex class I. Platelet production was maintained and platelet autoantibodies were not detected during acute infection. Concurrent with a decrease in platelet numbers and an increase in circulating monocytes, platelets were found sequestered in platelet-monocyte aggregates, thereby contributing to the decline in platelet counts. Because the majority of circulating CD16(+) monocytes formed complexes with platelets during acute SIV infection, a decreased platelet count may represent platelet participation in the innate immune response to HIV.


Assuntos
Plaquetas/imunologia , Imunidade Inata , Monócitos/imunologia , Ativação Plaquetária , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Animais , Autoanticorpos/imunologia , Plaquetas/virologia , Ligante de CD40/metabolismo , Agregação Celular , Modelos Animais de Doenças , Genes MHC Classe I , Macaca , Masculino , Monócitos/virologia , Selectina-P/metabolismo , Contagem de Plaquetas , Vírus da Imunodeficiência Símia , Suínos
15.
Nat Microbiol ; 8(5): 833-844, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973419

RESUMO

The development of persistent cellular reservoirs of latent human immunodeficiency virus (HIV) is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Previous studies show that HIV persists in myeloid cells (monocytes and macrophages) in blood and tissues in virologically suppressed people with HIV (vsPWH). However, how myeloid cells contribute to the size of the HIV reservoir and what impact they have on rebound after treatment interruption remain unclear. Here we report the development of a human monocyte-derived macrophage quantitative viral outgrowth assay (MDM-QVOA) and highly sensitive T cell detection assays to confirm purity. We assess the frequency of latent HIV in monocytes using this assay in a longitudinal cohort of vsPWH (n = 10, 100% male, ART duration 5-14 yr) and find half of the participants showed latent HIV in monocytes. In some participants, these reservoirs could be detected over several years. Additionally, we assessed HIV genomes in monocytes from 30 vsPWH (27% male, ART duration 5-22 yr) utilizing a myeloid-adapted intact proviral DNA assay (IPDA) and demonstrate that intact genomes were present in 40% of the participants and higher total HIV DNA correlated with reactivatable latent reservoirs. The virus produced in the MDM-QVOA was capable of infecting bystander cells resulting in viral spread. These findings provide further evidence that myeloid cells meet the definition of a clinically relevant HIV reservoir and emphasize that myeloid reservoirs should be included in efforts towards an HIV cure.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Masculino , Humanos , Feminino , Infecções por HIV/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , Antirretrovirais/uso terapêutico , HIV-1/genética , Latência Viral , Macrófagos
16.
J Extracell Vesicles ; 12(12): e12368, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38047476

RESUMO

Extracellular vesicles (EVs) can be loaded with therapeutic cargo and engineered for retention by specific body sites; therefore, they have great potential for targeted delivery of biomolecules to treat diseases. However, the pharmacokinetics and biodistribution of EVs in large animals remain relatively unknown, especially in primates. We recently reported that when cell culture-derived EVs are administered intravenously to Macaca nemestrina (pig-tailed macaques), they differentially associate with specific subsets of peripheral blood mononuclear cells (PBMCs). More than 60% of CD20+ B cells were observed to associate with EVs for up to 1 h post-intravenous administration. To investigate these associations further, we developed an ex vivo model of whole blood collected from healthy pig-tailed macaques. Using this ex vivo system, we found that labelled EVs preferentially associate with B cells in whole blood at levels similar to those detected in vivo. This study demonstrates that ex vivo blood can be used to study EV-blood cell interactions.


Assuntos
Vesículas Extracelulares , Animais , Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares , Distribuição Tecidual , Macaca nemestrina , Comunicação Celular
17.
J Extracell Biol ; 1(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36591537

RESUMO

Extracellular vesicles (EVs) have potential in disease treatment since they can be loaded with therapeutic molecules and engineered for retention by specific tissues. However, questions remain on optimal dosing, administration, and pharmacokinetics. Previous studies have addressed biodistribution and pharmacokinetics in rodents, but little evidence is available for larger animals. Here, we investigated the pharmacokinetics and biodistribution of Expi293F-derived EVs labelled with a highly sensitive nanoluciferase reporter (palmGRET) in a non-human primate model (Macaca nemestrina), comparing intravenous (IV) and intranasal (IN) administration over a 125-fold dose range. We report that EVs administered IV had longer circulation times in plasma than previously reported in mice and were detectable in cerebrospinal fluid (CSF) after 30-60 minutes. EV association with PBMCs, especially B-cells, was observed as early as one minute post-administration. EVs were detected in liver and spleen within one hour of IV administration. However, IN delivery was minimal, suggesting that pretreatment approaches may be needed in large animals. Furthermore, EV circulation times strongly decreased after repeated IV administration, possibly due to immune responses and with clear implications for xenogeneic EV-based therapeutics. We hope that our findings from this baseline study in macaques will help to inform future research and therapeutic development of EVs.

18.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914710

RESUMO

BACKGROUNDIdentifying a quantitative biomarker of neuropsychiatric dysfunction in people with HIV (PWH) remains a significant challenge in the neuroHIV field. The strongest evidence to date implicates the role of monocytes in central nervous system (CNS) dysfunction in HIV, yet no study has examined monocyte subsets in blood as a correlate and/or predictor of neuropsychiatric function in virally suppressed PWH.METHODSIn 2 independent cohorts of virologically suppressed women with HIV (vsWWH; n = 25 and n = 18), whole blood samples were obtained either in conjunction with neuropsychiatric assessments (neuropsychological [NP] test battery, self-report depression and stress-related symptom questionnaires) or 1 year prior to assessments. Immune cell subsets were assessed by flow cytometry.RESULTSA higher proportion of intermediate monocytes (CD14+CD16+) was associated with lower global NP function when assessing monocytes concurrently and approximately 1 year before (predictive) NP testing. The same pattern was seen for executive function (mental flexibility) and processing speed. Conversely, there were no associations with monocyte subsets and depression or stress-related symptoms. Additionally, we found that a higher proportion of classical monocytes was associated with better cognition.CONCLUSIONAlthough it is widely accepted that lentiviral infection of the CNS targets cells of monocyte-macrophage-microglial lineage and is associated with an increase in intermediate monocytes in the blood and monocyte migration into the brain, the percentage of intermediate monocytes in blood of vsWWH has not been associated with neuropsychiatric outcomes. Our findings provide evidence for a new, easily measured, blood-based cognitive biomarker in vsWWH.FUNDINGR01-MH113512, R01-MH113512-S, P30-AI094189, R01-MH112391, R01-AI127142, R00-DA044838, U01-AI35004, and P30-MH075673.


Assuntos
Cognição , Depressão/imunologia , Infecções por HIV/imunologia , Monócitos/imunologia , Estresse Psicológico/imunologia , Adulto , Fármacos Anti-HIV/uso terapêutico , Depressão/psicologia , Função Executiva , Feminino , Citometria de Fluxo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/psicologia , Humanos , Imunofenotipagem , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estresse Psicológico/psicologia , Resposta Viral Sustentada
19.
J Neuroimmune Pharmacol ; 14(1): 23-32, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30167896

RESUMO

Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies. Graphical Abstract.


Assuntos
Encéfalo/virologia , Infecções por HIV/virologia , Macrófagos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Latência Viral/fisiologia , Animais , HIV/fisiologia , Humanos , Vírus da Imunodeficiência Símia/fisiologia
20.
AIDS ; 33 Suppl 2: S181-S188, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31789817

RESUMO

: The current review examines the role of brain macrophages, that is perivascular macrophages and microglia, as a potential viral reservoir in antiretroviral therapy (ART) treated, simian immunodeficiency virus (SIV)-infected macaques. The role, if any, of latent viral reservoirs of HIV and SIV in the central nervous system during ART suppression is an unresolved issue. HIV and SIV infect both CD4 lymphocytes and myeloid cells in blood and tissues during acute and chronic infection. HIV spread to the brain occurs during acute infection by the infiltration of activated CD4 lymphocytes and monocytes from blood and is established in both embryonically derived resident microglia and monocyte-derived perivascular macrophages. ART controls viral replication in peripheral blood and cerebrospinal fluid in HIV-infected individuals but does not directly eliminate infected cells in blood, tissues or brain. Latently infected resting CD4 lymphocytes in blood and lymphoid tissues are a well recognized viral reservoir that can rebound once ART is withdrawn. In contrast, central nervous system resident microglia and perivascular macrophages in brain have not been examined as potential reservoirs for HIV during suppressive ART. Macrophages in tissues are long-lived cells that are HIV and SIV infected in tissues such as gut, lung, spleen, lymph node and brain and contribute to ongoing inflammation in tissues. However, their potential role in viral persistence and latency or their potential to rebound in the absence ART has not been examined. It has been shown that measurement of HIV latency by HIV DNA PCR in CD4 lymphocytes overestimates the size of the latent reservoirs of HIV that contribute to rebound that is cells containing the genomes of replicative viruses. Thus, the quantitative viral outgrowth assay has been used as a reliable measure of the number of latent cells that harbor infectious viral DNA and, may constitute a functional latent reservoir. Using quantitative viral outgrowth assays specifically designed to quantitate latently infected CD4 lymphocytes and myeloid cells in an SIV macaque model, we demonstrated that macrophages in brain harbor SIV genomes that reactivate and produce infectious virus in this assay, demonstrating that these cells have the potential to be a reservoir.


Assuntos
Encéfalo/virologia , Macrófagos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral , Animais , Antirretrovirais/uso terapêutico , Encéfalo/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Humanos , Macaca mulatta , Células Mieloides/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Carga Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA