Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Laryngoscope ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651563

RESUMO

BACKGROUND: Most tympanic membrane (TM) perforations heal spontaneously, but 10%-20% remain chronic and might lead to impaired hearing and recurrent middle ear infections. Alpha1-antitrypsin (AAT) is a circulating tissue-protective protein that is elevated under inflammatory conditions and is currently indicated for genetic AAT deficiency. Recently, AAT has been shown to promote tissue remodeling and inflammatory resolution. OBJECTIVE: This study aimed to examine the effects of local clinical-grade AAT treatment on tissue repair in a mouse model of acute traumatic TM perforation. METHODS: Wild-type mice underwent unilateral TM perforation and were either left untreated or treated locally with human AAT (9 × 10-3 mL at 20 mg/mL on days 0, 1, and 2; n = 15/group). The perforations were evaluated macroscopically on a serial basis. Mice were sacrificed on various days post-injury, and TMs were excised for gene analysis by RT-PCR. RESULTS: There were no adverse reactions in hAAT-treated ears throughout the study period. Compared with untreated animals, TM closure occurred earlier in the treated group (days until full closure, median: 4 and 9, respectively). According to gene expression analysis, VEGF, TGFß, and collagen-5A1 were induced earlier in AAT-treated mice (day 4-5 compared with day 9). Additionally, IL-10 expression levels were higher and IL-6 levels were lower in treated versus untreated mice. CONCLUSION: A local tissue environment rich in AAT promotes early tissue repair in a perforated TM model both macroscopically and molecularly. Studies are underway to examine TM functionality and recombinant AAT formulations for micro-dosing in the format of a single local application. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

2.
Otol Neurotol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896787

RESUMO

AIM: To characterize vestibular recovery in a mouse model of unilateral labyrinthotomy under local AAT and dexamethasone treatment. BACKGROUND: Alpha1-antitrypsin (AAT) is a circulating tissue-protective molecule that rises during inflammatory conditions and promotes inflammatory resolution. Its local concentration in human perilymph inversely correlates with the severity of inner ear dysfunction; concomitantly, mice that overexpress AAT and undergo inner ear trauma rapidly restore vestibular function. Locally applied AAT has yet to be examined in this context, nor has it been directly compared with anti-inflammatory corticosteroid treatment. METHODS: Wild-type mice C57BL/6 underwent a unilateral inner ear injury. Nine microliters of saline, clinical-grade AAT (180 µg/site), dexamethasone (4 mg/site), or both were applied locally on Days 0, 1, and 2 (n = 5/group). Vestibular function was assessed for 7 days. An in vitro human epithelial gap closure assay was performed using A549 cells in the presence of AAT and/or dexamethasone. RESULTS: Upon labyrinthotomy, all groups displayed severe vestibular dysfunction. Saline-treated mice showed the longest impairment. That group and the dexamethasone group displayed partial to no recovery, while AAT-treated mice exhibited complete recovery within 7 days; at this time point, dexamethasone-treated mice exhibited 50% recovery. Objective vestibular testing showed similar outcomes. In vitro, cotreatment with AAT and dexamethasone resulted in a gap closure dynamic that was superior to AAT alone at 6 h and superior to DEX alone at 48 h. CONCLUSION: Locally applied AAT treatment is superior to locally applied dexamethasone in promoting vestibular recovery in vivo. Ongoing studies are exploring the potential advantages of AAT combined with early low-dose dexamethasone therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA