Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Sci Total Environ ; 719: 137360, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114226

RESUMO

With the introduction of the One Health approach to global health advocated by the World Health Organization, the role of the environment as a reservoir and transmission route for diverse microorganisms is increasingly being recognised globally. This study investigated the diversity and functional profiles of bacterial communities using high-throughput metagenomics of the 16S rRNA gene in samples collected from environmental surfaces in different levels of healthcare in South Africa. A total of 150 samples were collected in three public hospitals [District (A), Regional (C) and Central (B)] from intensive care and paediatric wards. Military hospitals were excluded. Swabs were taken from mattresses, drip stands, ward telephones, patient files and sinks. A total of 7,996,346 reads were found, of which 7,319,569 were quality-filtered reads. Unique (and shared) microbial community structures were identified within the different hospital levels, locations and sample source. A total of 11 phyla, 29 classes, 50 orders, 105 families, 190 genera and 288 known species were identified. The primary phyla identified were Proteobacteria, Firmicutes and Actinobacteria. The dominant class identified was Gamma-proteobacteria, followed by Bacilli and Actinobacteria. Acinetobacter (16.08%), Citrobacter (13.64%), Staphylococcus (9.65%) and Corynebacterium (6.15%) were predominant genera. Although the functional profile analysis identified citrate cycle (TCA), signal transduction mechanisms, bisphenol degradation, tyrosine metabolism and transcription-factors as the dominant pathways, human disease functional classes, including involvement in antibiotic resistance, were significantly identified. The drip stands, patient files and ward telephones in all the wards of Hospitals A and C contained a higher number of human diseases functional classes. These findings highlight the potential of different hospital environments to serve as reservoirs and possible sources of bacterial pathogens; thus, the need for better monitoring and hygienic practices within the hospital environment.


Assuntos
Bactérias , Metagenoma , Hospitais Públicos , RNA Bacteriano , RNA Ribossômico 16S , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA