Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Analyst ; 148(18): 4447-4455, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37599598

RESUMO

Oral cancer is one of the most common types of cancer in Europe and its large diffusion requires, together with prevention, the development of low-cost and reliable portable platforms for its diagnosis, with features of high selectivity and sensitivity. In this study, the development and characterization of a molecularly imprinted polymer (MIP)-based electrochemical sensor for TGF-ß1 detection are reported. The optimized biosensor is a potential tool for the early screening of oral cancer. A biomimetic surface has been obtained by electropolymerization of o-phenylenediamine (o-PD) on platinum electrodes, in the presence of TGF-ß1 as a template molecule. MIP synthesis, template removal and TGF-ß1 rebinding have been monitored by Differential Pulse Voltammetry (DPV). Atomic Force Microscopy (AFM) has been performed to investigate and characterize the surface morphology and the influence of the washing step on MIP and NIP (non-imprinted polymer as the control) while the thickness of the polymer layer has been measured by Scanning Transmission Electron Microscopy (STEM) analysis. The MIP sensor performance has been tested in both buffer solution and saliva samples with TGF-ß1, showing a linear response in the considered range (from 20 ng ml-1 down to 0.5 ng ml-1), an outstanding LOD of 0.09 ng mL-1 and affinity and selectivity to TGF-ß1 also in the presence of interfering molecules. The sensor was used also for the detection of target molecules in spiked saliva samples with good recovery results suggesting the possibility of the use of the proposed system for large scale fast screening in oral cancer diagnosis.


Assuntos
Polímeros Molecularmente Impressos , Neoplasias Bucais , Humanos , Fator de Crescimento Transformador beta1 , Neoplasias Bucais/diagnóstico , Polímeros , Biópsia Líquida
2.
Chemistry ; 26(48): 11048-11059, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32628283

RESUMO

Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Carboidratos/química , Carcinoma Hepatocelular/diagnóstico por imagem , Ouro , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Compostos de Sulfidrila/química , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética
3.
Malar J ; 18(1): 70, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866941

RESUMO

While significant advances have been made in understanding Plasmodium falciparum gametocyte biology and its relationship with malaria parasite transmission, the gametocyte sex ratio contribution to this process still remains a relevant research question. The present review discusses the biology of sex determination in P. falciparum, the underlying host and parasite factors, the sex specific susceptibility to drugs, the effect of sex ratio dynamics on malaria parasite transmission and the development of gametocyte sex specific diagnosis tools. Despite the inherent differences across several studies and approaches, the emerging picture highlights a potentially relevant contribution of the P. falciparum gametocyte sex ratio in the modulation of malaria parasite transmission. The increasing availability of molecular methods to measure gametocyte sex ratio will enable evaluation of important parameters, such as the impact of drug treatment on gametocyte sex ratio in vitro and in vivo as well as the changes of gametocyte sex ratios in natural infections, key steps towards elucidating how these parameters affect parasite infectiousness to the mosquito vectors.


Assuntos
Transmissão de Doença Infecciosa , Genótipo , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Fenótipo , Plasmodium falciparum/citologia , Plasmodium falciparum/fisiologia , Feminino , Humanos , Masculino , Plasmodium falciparum/classificação , Plasmodium falciparum/genética
4.
Mol Microbiol ; 104(2): 306-318, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28118506

RESUMO

The goal to prevent Plasmodium falciparum transmission from humans to mosquitoes requires the identification of targetable metabolic processes in the mature (stage V) gametocytes, the sexual stages circulating in the bloodstream. This task is complicated by the apparently low metabolism of these cells, which renders them refractory to most antimalarial inhibitors and constrains the development of specific and sensitive cell-based assays. Here, we identify and functionally characterize the regulatory regions of the P. falciparum gene PF3D7_1234700, encoding a CPW-WPC protein and named here Upregulated in Late Gametocytes (ULG8), which we have leveraged to express reporter genes in mature male and female gametocytes. Using transgenic parasites containing a pfULG8-luciferase cassette, we investigated the susceptibility of stage V gametocytes to compounds specifically affecting redox metabolism. Our results reveal a high sensitivity of mature gametocytes to the glutathione reductase inhibitor and redox cycler drug methylene blue (MB). Using isobologram analysis, we find that a concomitant inhibition of the parasite enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase, a key component of NADPH synthesis, potently synergizes MB activity. These data suggest that redox metabolism and detoxification activity play an unsuspected yet vital role in stage V gametocytes, rendering these cells exquisitely sensitive to decreases in NADPH concentration.


Assuntos
Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/fisiologia , Regulação da Expressão Gênica , Genes Reporter , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/fisiologia , Luciferases , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , Oxirredução/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia
5.
J Infect Dis ; 216(4): 457-467, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931236

RESUMO

Background: Single low-dose primaquine (PQ) reduces Plasmodium falciparum infectivity before it impacts gametocyte density. Here, we examined the effect of PQ on gametocyte sex ratio as a possible explanation for this early sterilizing effect. Methods: Quantitative reverse-transcription polymerase chain reaction assays were developed to quantify female gametocytes (targeting Pfs25 messenger RNA [mRNA]) and male gametocytes (targeting Pf3D7_1469900 mRNA) in 2 randomized trials in Kenya and Mali, comparing dihydroartemisinin-piperaquine (DP) alone to DP with PQ. Gametocyte sex ratio was examined in relation to time since treatment and infectivity to mosquitoes. Results: In Kenya, the median proportion of male gametocytes was 0.33 at baseline. Seven days after treatment, gametocyte density was significantly reduced in the DP-PQ arm relative to the DP arm (females: 0.05% [interquartile range {IQR}, 0.0-0.7%] of baseline; males: 3.4% [IQR, 0.4%-32.9%] of baseline; P < .001). Twenty-four hours after treatment, gametocyte sex ratio became male-biased and was not significantly different between the DP and DP-PQ groups. In Mali, there was no significant difference in sex ratio between the DP and DP-PQ groups (>0.125 mg/kg) 48 hours after treatment, and gametocyte sex ratio was not associated with mosquito infection rates. Conclusions: The early sterilizing effects of PQ may not be explained by the preferential clearance of male gametocytes and may be due to an effect on gametocyte fitness.


Assuntos
Antimaláricos/uso terapêutico , Células Germinativas/efeitos dos fármacos , Primaquina/uso terapêutico , Proteínas de Protozoários/genética , Adolescente , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Quênia , Masculino , Mali , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Quinolinas/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamanho da Amostra
6.
Mol Microbiol ; 101(3): 381-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27073104

RESUMO

Emerging resistance to first-line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine-containing compound ACT-451840 exhibits single-digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro-derived ACT-451840-resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane-bound ATP-binding cassette transporter known to alter P. falciparum susceptibility to multiple first-line antimalarials. CRISPR-Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT-451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9-introduced pfmdr1 mutations also acquired ACT-451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease-relieving and transmission-blocking antimalarials.


Assuntos
Acrilamidas/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Resistência a Medicamentos , Sinergismo Farmacológico , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/metabolismo , Mutação Puntual , Polimorfismo de Nucleotídeo Único
7.
Malar J ; 16(1): 468, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149898

RESUMO

BACKGROUND: The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites. AIM AND OBJECTIVES: The aim of this work was to develop sensitive and cheap Real Time qPCR assays for large-scale epidemiological surveys, based on detection and amplification of gametocyte sex specific transcripts selected from the literature: the female-specific pfs25 and pf glycerol kinase (pfGK) and the male-specific pfs230p and pf13 transcripts. METHODS: RTqPCR assays were used to test the gametocyte- and sex-specific expression of the target genes using asexual stages of the gametocyteless parasite clone F12 and FACS purified male and female gametocytes of the PfDynGFP/P47mCherry line. Assays were performed on 50 blood samples collected during an epidemiological survey in the Soumousso village, Burkina Faso, West-Africa, and amplification of the human housekeeping gene 18S rRNA was employed to normalize RNA sample variability. RESULTS: SYBR Green assays were developed that showed higher sensitivity compared to Taqman assays at a reduced cost. RTqPCR results confirmed that expression of pfs25 and pfs230p are female and male-specific, respectively, and introduced two novel markers, the female-specific pfGK and the male-specific pf13. A formula was derived to calculate the ratio of male to female gametocytes based on the ratio of male to female transcript copy number. Use of these assays in the field samples showed, as expected, a higher sensitivity of RTqPCR compared to microscopy. Importantly, similar values of gametocyte sex-ratio were obtained in the field samples based on the four different target combinations. CONCLUSION: Novel, sensitive, cheap and robust molecular assays were developed for the detection and quantification of female and male P. falciparum gametocytes. In particular, the RTqPCR assays based on the female-specific pfs25 and the newly described male gametocyte-specific pf13 transcripts, including normalization by the human 18S, reliably assess presence and abundance of female and male gametocytes and enable to determine their sex-ratio in human subjects in endemic areas.


Assuntos
Microscopia/métodos , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Burkina Faso , Humanos , Dinâmica Populacional
8.
J Antimicrob Chemother ; 71(5): 1148-58, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26888912

RESUMO

OBJECTIVES: As most available antimalarial drugs are ineffective against the Plasmodium falciparum transmission stages, new drugs against the parasite's gametocytes are urgently needed to combat malaria globally. The unique biology of gametocytes requires assays that need to be specific, to faithfully monitor anti-gametocyte activity, and to be easy to perform, cheap and scalable to high-throughput screening (HTS). METHODS: We developed an HTS cell-based assay with P. falciparum gametocytes specifically expressing a potent luciferase. To confirm HTS hit activity for several parasite genotypes, the luciferase assay and the gametocyte lactate dehydrogenase (LDH) assay, usable on any parasite isolate, were compared by screening antimalarial drugs and determining IC50 values of anti-gametocyte hits from the 'Malaria Box' against early- and late-stage gametocytes. RESULTS: Comparison of the two assays, conducted on the early and on late gametocyte stages, revealed an excellent correlation (R(2) > 0.9) for the IC50 values obtained by the respective readouts. Differences in susceptibility to drugs and compounds between the two parasite developmental stages were consistently measured in both assays. CONCLUSIONS: This work indicates that the luciferase and gametocyte LDH assays are interchangeable and that their specific advantages can be exploited to design an HTS pipeline leading to new transmission-blocking compounds. Results from these assays consistently defined a gametocyte chemical susceptibility profile, relevant to the planning of future drug discovery strategies.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Plasmodium falciparum/efeitos dos fármacos , Técnicas Citológicas/métodos , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , L-Lactato Desidrogenase/análise , Luciferases/análise , Plasmodium falciparum/enzimologia , Coloração e Rotulagem
9.
Anal Chem ; 86(17): 8814-21, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25102353

RESUMO

New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z' factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z' factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing D-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level.


Assuntos
Medições Luminescentes , Microscopia de Vídeo , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Antimaláricos/farmacologia , Linhagem Celular , Imunofluorescência , Humanos , Luciferases/genética , Luciferases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Análise de Célula Única
10.
Eur J Immunol ; 42(6): 1468-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22678901

RESUMO

A clonal population of B cells expressing a V(H) 1-69-encoded idiotype accumulates in hepatitis C virus (HCV) associated mixed cryoglobulinemia (MC). These cells are phenotypically heterogeneous, resembling either typical marginal zone (MZ) B cells (IgM(+) IgD(+) CD27(+) CD21(+) ) or the exhausted CD21(low) B cells that accumulate in HIV infection or in common variable immunodeficiency. We show that both the MZ-like and the CD21(low) V(H) 1-69(+) B cells of MC patients are functionally exhausted, since they fail to respond to TLR and BCR ligands. The proliferative defect of V(H) 1-69(+) B cells can be overcome by co-stimulation of TLR9 and BCR in the presence of interleukin(IL)-2 and IL-10. The MZ-like V(H) 1-69(+) B cells do not express the inhibitory receptors distinctive of CD21(low) B cells, but display constitutive activation of extracellular signal regulated kinase (ERK) and attenuated BCR/ERK signaling. These cells also express abundant transcripts of Stra13 (DEC1, Bhlhb2, Sharp2, Clast5), a basic helix-loop-helix transcription factor that acts as a powerful negative regulator of B-cell proliferation and homeostasis. Our findings suggest that MZ B cells activated by HCV undergo functional exhaustion associated with BCR signaling defects and overexpression of a key antiproliferative gene, and may subsequently become terminally spent CD21(low) B cells. Premature exhaustion may serve to prevent the outgrowth of chronically stimulated MZ B cells.


Assuntos
Linfócitos B/imunologia , Crioglobulinemia/imunologia , Proteínas de Ligação a DNA/fisiologia , Hepatite C/complicações , Proteínas Nucleares/fisiologia , Receptores de Complemento 3d/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/análise , Feminino , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/análise , Fenótipo , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais , Receptor Toll-Like 9/fisiologia
11.
Materials (Basel) ; 16(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837327

RESUMO

The removal of pollutants, such as heavy metals, aromatic compounds, dyes, pesticides and pharmaceuticals, from water is still an open challenge. Many methods have been developed and exploited for the purification of water from contaminants, including photocatalytic degradation, biological treatment, adsorption and chemical precipitation. Absorption-based techniques are still considered among the most efficient and commonly used approaches thanks to their operational simplicity. In recent years, polydopamine-coated magnetic nanoparticles have emerged for the uptake of heavy metals in water treatment, since they combine specific affinity towards pollutants and magnetic separation capacity. In this context, this work focuses on the synthesis of polydopamine (PDA)-coated Super Paramagnetic Iron Oxide Nanoparticles (PDA@SPIONs) as adsorbents for Cu2+ ions, designed to serve as functional nanostructures for the removal of Cu2+ from water by applying a magnetic field. The synthetic parameters, including the amount of SPIONs and PDA, were thoroughly investigated to define their effects on the nanostructure features and properties. Subsequently, the ability of the magnetic nanostructures to bind metal ions was assessed on Cu2+-containing solutions. A systematic investigation of the prepared functional nanostructures was carried out by means of complementary spectroscopic, morphological and magnetic techniques. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements were performed in order to estimate the Cu2+ binding ability. The overall results indicate that these nanostructures hold great promise for future bioremediation applications.

12.
Front Cell Infect Microbiol ; 13: 1161669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153157

RESUMO

Introduction: Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods: We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results: We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion: Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.


Assuntos
Malária Falciparum , Malária , Parasitos , Humanos , Animais , Camundongos , Plasmodium falciparum , Medula Óssea/parasitologia , Malária Falciparum/parasitologia
13.
J Clin Immunol ; 32(4): 729-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22382878

RESUMO

PURPOSE: Functionally exhausted and mostly autoreactive B-cells with a peculiar CD21(low)CD11c(+) phenotype accumulate in several human immunological disorders including common variable immunodeficiency, HIV infection and rheumatoid arthritis. In HCV-associated mixed cryoglobulinemia (MC) there is accumulation of exhausted clonal B cells expressing a V(H)1-69-encoded cross-reactive idiotype; these cells are phenotypically heterogeneous, displaying either a CD21(low)CD11c(+) or a marginal zone (MZ)-like (IgM(+)CD27(+)CD21(+)CD11c(-)) phenotype. Irrespective of their phenotype, V(H)1-69(+) B-cells are unresponsive to the stimulation of Toll-like receptor 9 (TLR9). We investigated the fate of these cells after the eradication of HCV. METHODS: Fourteen MC patients were studied before and after antiviral therapy. V(H)1-69(+) B-cells were identified using the G6 monoclonal antibody and their phenotype and responsiveness to the stimulation of TLR9 were investigated. RESULTS: In seven virological non-responders, cryoglobulin levels and the number and phenotype of V(H)1-69(+) B cells remained substantially unchanged. By contrast, in sustained viral responders cryoglobulinemia subsided and the number of V(H)1-69(+) B cells declined. However, high proportions of MZ-like V(H)1-69(+) B cells retaining unresponsiveness to TLR9 stimulation persisted for several months in these patients. CONCLUSIONS: Clonal expansion of CD21(low) V(H)1-69(+) B cells may depend on continual stimulation by HCV, whereas their MZ-like counterparts may persist for years after the eradication of infection. Prolonged survival of exhausted MZ-like B cells after withdrawal of the initial inciting stimulus may contribute to the accumulation of autoreactive B cells in immunological disorders.


Assuntos
Anticorpos Monoclonais/sangue , Subpopulações de Linfócitos B/imunologia , Crioglobulinemia/imunologia , Hepatite C/imunologia , Adulto , Idoso , Antígeno CD11c/análise , Crioglobulinemia/virologia , Crioglobulinas/análise , Feminino , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/terapia , Humanos , Idiótipos de Imunoglobulinas/biossíntese , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , Receptores de Complemento 3d/análise , Receptor Toll-Like 9/imunologia
14.
Eur J Immunol ; 41(3): 854-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21287551

RESUMO

A subset of patients with common variable immunodeficiency (CVID), group 1a of the Freiburg classification, is characterized by increased B cells expressing low levels of CD21 (CD21(low) ), lymphoproliferation and autoimmunity. The CD21(low) B cells have been shown to be profoundly anergic, and defects of BCR-mediated calcium signaling and of T cells have been described in CVID 1a. We found that also the classical naïve B cells from CVID 1a patients, but not from CVID non-1a patients, proliferated poorly. The B cells of CVID 1a patients had a reduced capacity to divide reminiscent of the proliferative arrest associated with replicative senescence. Thus, we investigated whether lymphocyte dysfunction in CVID 1a was related to telomere-dependent replicative senescence, and found that both the B and the T cells from CVID 1a patients had significantly shorter telomeres compared with B and T cells from CVID non-1a patients. Telomere lengths in B and T cells were significantly correlated, indicating that the rate of telomere attrition in lymphocytes is an individual characteristic of CVID patients. Our findings suggest that telomere-dependent replicative senescence contributes to the immune dysfunction of CVID 1a patients, and may provide an important clue for a better understanding of the pathogenesis of CVID.


Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/imunologia , Linfócitos T/imunologia , Telômero/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/patologia , Sinalização do Cálcio/imunologia , Estudos de Casos e Controles , Senescência Celular/imunologia , Imunodeficiência de Variável Comum/classificação , Imunodeficiência de Variável Comum/etiologia , Imunodeficiência de Variável Comum/patologia , Feminino , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Receptores de Complemento 3d/metabolismo , Linfócitos T/patologia , Telômero/genética , Adulto Jovem
15.
Nanomaterials (Basel) ; 12(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407264

RESUMO

Magnetic iron oxide nanoparticles have been extensively investigated due to their applications in various fields such as biomedicine, sensing, and environmental remediation. However, they need to be coated with a suitable material in order to make them biocompatible and to add new functionalities on their surface. This review is intended to give a comprehensive overview of recent advantages and applications of iron oxide nanoparticles coated by polydopamine film. The synthesis method of magnetic nanoparticles, their functionalization with bioinspired materials and (in particular) with polydopamine are discussed. Finally, some interesting applications of polydopamine-coated magnetic iron oxide nanoparticles will be pointed out.

16.
Commun Biol ; 5(1): 547, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668202

RESUMO

Blocking Plasmodium falciparum human-to-mosquito transmission is essential for malaria elimination, nonetheless drugs killing the pathogenic asexual stages are generally inactive on the parasite transmissible stages, the gametocytes. Due to technical and biological limitations in high throughput screening of non-proliferative stages, the search for gametocyte-killing molecules so far tested one tenth the number of compounds screened on asexual stages. Here we overcome these limitations and rapidly screened around 120,000 compounds, using not purified, bioluminescent mature gametocytes. Orthogonal gametocyte assays, selectivity assays on human cells and asexual parasites, followed by compound clustering, brought to the identification of 84 hits, half of which are gametocyte selective and half with comparable activity against sexual and asexual parasites. We validated seven chemotypes, three of which are, to the best of our knowledge, novel. These molecules are able to inhibit male gametocyte exflagellation and block parasite transmission through the Anopheles mosquito vector in a standard membrane feeding assay. This work shows that interrogating a wide and diverse chemical space, with a streamlined gametocyte HTS and hit validation funnel, holds promise for the identification of dual stage and gametocyte-selective compounds to be developed into new generation of transmission blocking drugs for malaria elimination.


Assuntos
Anopheles , Malária , Animais , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Plasmodium falciparum
17.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215282

RESUMO

This work describes the activity of 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX) and of its newly identified carboxylic acid metabolite on the human malaria parasite Plasmodium falciparum. NBDHEX has been previously identified as a potent cytotoxic agent against murine and human cancer cells as well as towards the protozoan parasite Giardia duodenalis. We show here that NBDHEX is active in vitro against all blood stages of P. falciparum, with the rare feature of killing the parasite stages transmissible to mosquitoes, the gametocytes, with a 4-fold higher potency than that on the pathogenic asexual stages. This activity importantly translates into blocking parasite transmission through the Anopheles vector in mosquito experimental infections. A mass spectrometry analysis identified covalent NBDHEX modifications in specific cysteine residues of five gametocyte proteins, possibly associated with its antiparasitic effect. The carboxylic acid metabolite of NBDHEX retains the gametocyte preferential inhibitory activity of the parent compound, making this novel P. falciparum transmission-blocking chemotype at least as a new tool to uncover biological processes targetable by gametocyte selective drugs. Both NBDHEX and its carboxylic acid metabolite show very limited in vitro cytotoxicity on VERO cells. This result and previous evidence that NBDHEX shows an excellent in vivo safety profile in mice and is orally active against human cancer xenografts make these molecules potential starting points to develop new P. falciparum transmission-blocking agents, enriching the repertoire of drugs needed to eliminate malaria.

18.
Sci Rep ; 11(1): 19118, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580326

RESUMO

The use of quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. To understand how the parasite adjusts its transmission in response to in-host environmental conditions including antimalarials requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that specifically detect and quantify early-stage P. falciparum gametocytes. The assays are based on expression of known early and late gametocyte genes and were developed using purified stage II and stage V gametocytes and tested in natural and controlled human infections. Genes pfpeg4 and pfg27 are specifically expressed at significant levels in early gametocytes with a limit of quantification of 190 and 390 gametocytes/mL, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection. In natural infections, both early (pfpeg4/pfg27) and late gametocyte transcripts (pfs25) were detected in 71.2% of individuals, only early gametocyte transcripts in 12.6%, and only late gametocyte transcripts in 15.2%. The pfpeg4/pfg27 qRT-PCR assays are sensitive and specific for quantification of circulating sexually committed ring stages/early gametocytes and can be used to increase our understanding of epidemiological processes that modulate P. falciparum transmission.


Assuntos
Malária Falciparum/diagnóstico , Merozoítos/isolamento & purificação , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Adolescente , Adulto , Antimaláricos/uso terapêutico , Feminino , Genes de Protozoários , Voluntários Saudáveis , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Limite de Detecção , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Merozoítos/genética , Pessoa de Meia-Idade , Carga Parasitária , Plasmodium falciparum/genética , Reprodutibilidade dos Testes , Adulto Jovem
19.
Adv Sci (Weinh) ; 8(14): 2004101, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34306971

RESUMO

Malaria remains the most important mosquito-borne infectious disease worldwide, with 229 million new cases and 409.000 deaths in 2019. The infection is caused by a protozoan parasite which attacks red blood cells by feeding on hemoglobin and transforming it into hemozoin. Despite the WHO recommendation of prompt malaria diagnosis, the quality of microscopy-based diagnosis is frequently inadequate while rapid diagnostic tests based on antigens are not quantitative and still affected by non-negligible false negative/positive results. PCR-based methods are highly performant but still not widely used in endemic areas. Here, a diagnostic tool (TMek), based on the paramagnetic properties of hemozoin nanocrystals in infected red blood cells (i-RBCs), is reported on. Exploiting the competition between gravity and magnetic forces, i-RBCs in a whole blood specimen are sorted and electrically detected in a microchip. The amplitude and time evolution of the electrical signal allow for the quantification of i-RBCs (in the range 10-105 i-RBC µL-1) and the distinction of the infection stage. A preliminary validation study on 75 patients with clinical suspect of malaria shows on-field operability, without false negative and a few false positive results. These findings indicate the potential of TMek as a quantitative, stage-selective, rapid test for malaria.


Assuntos
Dispositivos Lab-On-A-Chip , Malária/diagnóstico , Eritrócitos/parasitologia , Estudos de Avaliação como Assunto , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Front Microbiol ; 11: 269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256458

RESUMO

The egress and fertilization of Plasmodium gametes and development of a motile ookinete are the first crucial steps that mediate the successful transmission of the malaria parasites from humans to the Anopheles vector. However, limited information exists about the cell biology and regulation of this process. Technical impediments in the establishment of in vitro conditions for ookinete maturation in Plasmodium falciparum and other human malaria parasites further constrain a detailed characterization of ookinete maturation. Here, using fluorescence microscopy and immunolabeling, we compared P. falciparum ookinete maturation in Anopheles coluzzii mosquitoes in vivo and in cell culture in vitro. Our results identified two critical steps in ookinete maturation that are regulated by distinct mosquito factors, thereby highlighting the role of the mosquito environment in the transmission efficiency of malaria parasites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA