Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850923

RESUMO

The rapid proliferation of the emerging yet promising notion of the Internet-of-Vehicles (IoV) has led to the development of a variety of conventional trust assessment schemes to tackle insider attackers. The primary reliance of these frameworks is on the accumulation of individual trust attributes. While aggregating these influential parameters, weights are often associated with each individual attribute to reflect its impact on the final trust score. It is of paramount importance that such weights be precise to lead to an accurate trust assessment. Moreover, the value of the minimum acceptable trust threshold employed for the identification of dishonest vehicles needs to be carefully defined to avoid delayed or erroneous detection. This paper employs an IoT data set from CRAWDAD by suitably transforming it into an IoV format. This data set encompasses information regarding 18,226 interactions among 76 nodes, both honest and dishonest. First, the influencing parameters (i.e., packet delivery ratio, familiarity, timeliness and interaction frequency) were computed, and two feature matrices were formed. The first matrix (FM1) takes into account all the pairwise individual parameters as individual features, whereas the second matrix (FM2) considers the average of all pairwise computations performed for each individual parameter as one feature. Subsequently, unsupervised learning is employed to achieve the ground truth prior to applying supervised machine learning algorithms for classification purposes. It is worth noting that Subspace KNN yielded a perfect precision, recall, and the F1-score equal to 1 for individual parametric scores, whereas Subspace Discriminant returned an ideal precision, recall, and the F1-score equal to 1 for mean parametric scores. It is also evident from extensive simulations that FM2 yielded more accurate classification results compared to FM1. Furthermore, decision boundaries among honest and dishonest vehicles have also been computed for respective feature matrices.

2.
J Med Syst ; 40(5): 126, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27067432

RESUMO

The ubiquitous use and advancement in built-in smartphone sensors and the development in big data processing have been beneficial in several fields including healthcare. Among the basic vitals monitoring, pulse rate monitoring is the most important healthcare necessity. A multimedia video stream data acquired by built-in smartphone camera can be used to estimate it. In this paper, an algorithm that uses only smartphone camera as a sensor to estimate pulse rate using PhotoPlethysmograph (PPG) signals is proposed. The results obtained by the proposed algorithm are compared with the actual pulse rate and the maximum error found is 3 beats per minute. The standard deviation in percentage error and percentage accuracy is found to be 0.68 % whereas the average percentage error and percentage accuracy is found to be 1.98 % and 98.02 % respectively.


Assuntos
Algoritmos , Fotopletismografia/métodos , Pulso Arterial , Processamento de Sinais Assistido por Computador , Smartphone , Humanos , Análise de Regressão
3.
IEEE Rev Biomed Eng ; 11: 21-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29993663

RESUMO

Keeping track of blood glucose levels non-invasively is now possible due to diverse breakthroughs in wearable sensors technology coupled with advanced biomedical signal processing. However, each user might have different requirements and priorities when it comes to selecting a self-monitoring solution. After extensive research and careful selection, we have presented a comprehensive survey on noninvasive/pain-free blood glucose monitoring methods from the recent five years (2012-2016). Several techniques, from bioinformatics, computer science, chemical engineering, microwave technology, etc., are discussed in order to cover a wide variety of solutions available for different scales and preferences. We categorize the noninvasive techniques into nonsample- and sample-based techniques, which we further grouped into optical, nonoptical, intermittent, and continuous. The devices manufactured or being manufactured for noninvasive monitoring are also compared in this paper. These techniques are then analyzed based on certain constraints, which include time efficiency, comfort, cost, portability, power consumption, etc., a user might experience. Recalibration, time, and power efficiency are the biggest challenges that require further research in order to satisfy a large number of users. In order to solve these challenges, artificial intelligence (AI) has been employed by many researchers. AI-based estimation and decision models hold the future of noninvasive glucose monitoring in terms of accuracy, cost effectiveness, portability, efficiency, etc. The significance of this paper is twofold: first, to bridge the gap between IT and medical field; and second, to bridge the gap between end users and the solutions (hardware and software).


Assuntos
Automonitorização da Glicemia , Glicemia/análise , Monitorização Ambulatorial , Dispositivos Eletrônicos Vestíveis , Humanos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA