Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(23): 8578-8587, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37253265

RESUMO

Large greenhouse gas emissions occur via the release of carbon dioxide (CO2) and methane (CH4) from the surface layer of lakes. Such emissions are modeled from the air-water gas concentration gradient and the gas transfer velocity (k). The links between k and the physical properties of the gas and water have led to the development of methods to convert k between gases through Schmidt number normalization. However, recent observations have found that such normalization of apparent k estimates from field measurements can yield different results for CH4 and CO2. We estimated k for CO2 and CH4 from measurements of concentration gradients and fluxes in four contrasting lakes and found consistently higher (on an average 1.7 times) normalized apparent k values for CO2 than CH4. From these results, we infer that several gas-specific factors, including chemical and biological processes within the water surface microlayer, can influence apparent k estimates. We highlight the importance of accurately measuring relevant air-water gas concentration gradients and considering gas-specific processes when estimating k.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Lagos/química , Gases , Gases de Efeito Estufa/análise , Metano/análise , Água
2.
Proc Natl Acad Sci U S A ; 117(35): 21488-21494, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817550

RESUMO

Lakes are considered the second largest natural source of atmospheric methane (CH4). However, current estimates are still uncertain and do not account for diel variability of CH4 emissions. In this study, we performed high-resolution measurements of CH4 flux from several lakes, using an automated and sensor-based flux measurement approach (in total 4,580 measurements), and demonstrated a clear and consistent diel lake CH4 flux pattern during stratification and mixing periods. The maximum of CH4 flux were always noted between 10:00 and 16:00, whereas lower CH4 fluxes typically occurred during the nighttime (00:00-04:00). Regardless of the lake, CH4 emissions were on an average 2.4 higher during the day compared to the nighttime. Fluxes were higher during daytime on nearly 80% of the days. Accordingly, estimates and extrapolations based on daytime measurements only most likely result in overestimated fluxes, and consideration of diel variability is critical to properly assess the total lake CH4 flux, representing a key component of the global CH4 budget. Hence, based on a combination of our data and additional literature information considering diel variability across latitudes, we discuss ways to derive a diel variability correction factor for previous measurements made during daytime only.


Assuntos
Lagos/química , Metano/análise , Metano/biossíntese , Ritmo Circadiano , Monitoramento Ambiental , Estações do Ano
3.
Limnol Oceanogr ; 61(Suppl 1): S175-S187, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27881883

RESUMO

River-floodplain systems are characterized by changing hydrological connectivity and variability of resources delivered to floodplain water bodies. Although the importance of hydrological events has been recognized, the effect of flooding on CH4 concentrations and emissions from European, human-impacted river-floodplains is largely unknown. This study evaluates aquatic concentrations and emissions of CH4 from a highly modified, yet partly restored river-floodplain system of the Danube near Vienna (Austria). We covered a broad range of hydrological conditions, including a 1-yr flood event in 2012 and a 100-yr flood in 2013. Our findings demonstrate that river-floodplain waters were supersaturated with CH4, hence always serving as a source of CH4 to the atmosphere. Hydrologically isolated habitats in general have higher concentrations and produce higher fluxes despite lower physically defined velocities. During surface connection, however, CH4 is exported from the floodplain to the river, suggesting that the main channel serves as an "exhaust pipe" for the floodplain. This mechanism was especially important during the 100-yr flood, when a clear pulse of CH4 was flushed from the floodplain with surface floodwaters. Our results emphasize the importance of floods differing in magnitude for methane evasion from river-floodplains; 34% more CH4 was emitted from the entire system during the year with the 100-yr flood compared to a hydrologically "normal" year. Compared to the main river channel, semiisolated floodplain waters were particularly strong sources of CH4. Our findings also imply that the predicted increased frequency of extreme flooding events will have significant consequences for methane emission from river-floodplain systems.

4.
Appl Environ Microbiol ; 80(19): 6004-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063654

RESUMO

Headwater streams are tightly connected with the terrestrial milieu from which they receive deliveries of organic matter, often through the hyporheic zone, the transition between groundwater and streamwater. Dissolved organic matter (DOM) from terrestrial sources (that is, allochthonous) enters the hyporheic zone, where it may mix with DOM from in situ production (that is, autochthonous) and where most of the microbial activity takes place. Allochthonous DOM is typically considered resistant to microbial metabolism compared to autochthonous DOM. The composition and functioning of microbial biofilm communities in the hyporheic zone may therefore be controlled by the relative availability of allochthonous and autochthonous DOM, which can have implications for organic matter processing in stream ecosystems. Experimenting with hyporheic biofilms exposed to model allochthonous and autochthonous DOM and using 454 pyrosequencing of the 16S rRNA (targeting the "active" community composition) and of the 16S rRNA gene (targeting the "bulk" community composition), we found that allochthonous DOM may drive shifts in community composition whereas autochthonous DOM seems to affect community composition only transiently. Our results suggest that priority effects based on resource-driven stochasticity shape the community composition in the hyporheic zone. Furthermore, measurements of extracellular enzymatic activities suggest that the additions of allochthonous and autochthonous DOM had no clear effect on the function of the hyporheic biofilms, indicative of functional redundancy. Our findings unravel possible microbial mechanisms that underlie the buffering capacity of the hyporheic zone and that may confer stability to stream ecosystems.


Assuntos
Bactérias/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Rios/microbiologia , Microbiologia da Água , Bactérias/enzimologia , Bactérias/genética , Sequência de Bases , Biomassa , Carbono/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Ecossistema , Oxigênio/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rios/química , Análise de Sequência de DNA
5.
Sci Total Environ ; 895: 164849, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331406

RESUMO

Methane (CH4) emissions (FCH4) from northern freshwater lakes are not only significant but also highly variable in time and one driver variable suggested to be important is precipitation. Rain can have various, potentially large effects on FCH4 across multiple time frames, and verifying the impact of rain on lake FCH4 is key to understand both contemporary flux regulation, and to predict future FCH4 related to possible changes in frequency and intensity of rainfall from climate change. The main objective of this study was to assess the short-term impact of typically occurring rain events with different intensity on FCH4 from various lake types located in hemiboreal, boreal, and subarctic Sweden. In spite of high time resolution automated flux measurements across different depth zones and covering numerous commonly types of rain events in northern areas, in general, no strong impact on FCH4 during and within 24 h after the rainfall could be observed. Only in deeper lake areas and during longer rain events FCH4 was weakly related to rain (R2 = 0.29, p < 0.05), where a minor FCH4 decrease during the rain was identified, suggesting that direct rainwater input, during greater rainfall, may decrease FCH4 by dilution of surface water CH4. Overall, this study indicates that typical rain events in the studied regions have minor direct short-term effects on FCH4 from northern lakes and do not enhance FCH4 from shallow and deeper parts of lakes during and up to 24-h after the rainfall. Instead, other factors such as wind speed, water temperature and pressure changes were more strongly correlated with lake FCH4.

6.
Aquat Sci ; 82(2): 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165802

RESUMO

It is well recognized that river-floodplain systems contribute significantly to riverine ecosystem metabolism, and that bacteria are key players in the aquatic organic carbon cycle, but surprisingly few studies have linked bacterial community composition (BCC), function and carbon quality in these hydrologically highly dynamic habitats. We investigated aquatic BCC and extracellular enzymatic activity (EEA) related to dissolved organic carbon quality and algae composition, including the impact of a major flood event in one of the last remaining European semi-natural floodplain-systems. We found that surface connectivity of floodplain pools homogenizes BCC and EEA, whereas low connectivity led to increased BCC and EEA heterogeneity, supported by their relationship to electrical conductivity, an excellent indicator for surface connection strength. Hydrogeochemical parameters best explained variation of both BCC and EEA, while the algal community and chromophoric DOM properties explained only minor fractions of BCC variation. We conclude that intermittent surface connectivity and especially permanent isolation of floodplain pools from the main river channel may severely alter BCC and EEA, with potential consequences for nutrient cycling, ecological services and greenhouse gas emissions. Disentangling microbial structure-function coupling is therefore crucial, if we are to understand and predict the consequences of human alterations on these dynamic systems.

7.
Front Microbiol ; 6: 80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741326

RESUMO

River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with ß-glucosidase, which was related to BSP. This shows that-in disconnected floodplain backwaters with high terrestrial input-BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM.

8.
Aquat Sci ; 76: 115-129, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24415892

RESUMO

Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l-1 and CDOM from 2.94 to 14.32 m-1. The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA