RESUMO
BACKGROUND AND AIMS: Alagille syndrome (ALGS) is characterized by chronic cholestasis with associated pruritus and extrahepatic anomalies. Maralixibat, an ileal bile acid transporter inhibitor, is an approved pharmacologic therapy for cholestatic pruritus in ALGS. Since long-term placebo-controlled studies are not feasible or ethical in children with rare diseases, a novel approach was taken comparing 6-year outcomes from maralixibat trials with an aligned and harmonized natural history cohort from the G lobal AL agille A lliance (GALA) study. APPROACH AND RESULTS: Maralixibat trials comprise 84 patients with ALGS with up to 6 years of treatment. GALA contains retrospective data from 1438 participants. GALA was filtered to align with key maralixibat eligibility criteria, yielding 469 participants. Serum bile acids could not be included in the GALA filtering criteria as these are not routinely performed in clinical practice. Index time was determined through maximum likelihood estimation in an effort to align the disease severity between the two cohorts with the initiation of maralixibat. Event-free survival, defined as the time to first event of manifestations of portal hypertension (variceal bleeding, ascites requiring therapy), surgical biliary diversion, liver transplant, or death, was analyzed by Cox proportional hazards methods. Sensitivity analyses and adjustments for covariates were applied. Age, total bilirubin, gamma-glutamyl transferase, and alanine aminotransferase were balanced between groups with no statistical differences. Event-free survival in the maralixibat cohort was significantly better than the GALA cohort (HR, 0.305; 95% CI, 0.189-0.491; p <0.0001). Multiple sensitivity and subgroup analyses (including serum bile acid availability) showed similar findings. CONCLUSIONS: This study demonstrates a novel application of a robust statistical method to evaluate outcomes in long-term intervention studies where placebo comparisons are not feasible, providing wide application for rare diseases. This comparison with real-world natural history data suggests that maralixibat improves event-free survival in patients with ALGS.
Assuntos
Síndrome de Alagille , Humanos , Síndrome de Alagille/complicações , Síndrome de Alagille/tratamento farmacológico , Feminino , Masculino , Estudos Retrospectivos , Criança , Lactente , Pré-Escolar , Intervalo Livre de Progressão , Adolescente , Proteínas de Transporte , Glicoproteínas de MembranaRESUMO
BACKGROUND AND AIMS: Alagille syndrome (ALGS) is a multisystem disorder, characterized by cholestasis. Existing outcome data are largely derived from tertiary centers, and real-world data are lacking. This study aimed to elucidate the natural history of liver disease in a contemporary, international cohort of children with ALGS. APPROACH AND RESULTS: This was a multicenter retrospective study of children with a clinically and/or genetically confirmed ALGS diagnosis, born between January 1997 and August 2019. Native liver survival (NLS) and event-free survival rates were assessed. Cox models were constructed to identify early biochemical predictors of clinically evident portal hypertension (CEPH) and NLS. In total, 1433 children (57% male) from 67 centers in 29 countries were included. The 10 and 18-year NLS rates were 54.4% and 40.3%. By 10 and 18 years, 51.5% and 66.0% of children with ALGS experienced ≥1 adverse liver-related event (CEPH, transplant, or death). Children (>6 and ≤12 months) with median total bilirubin (TB) levels between ≥5.0 and <10.0 mg/dl had a 4.1-fold (95% confidence interval [CI], 1.6-10.8), and those ≥10.0 mg/dl had an 8.0-fold (95% CI, 3.4-18.4) increased risk of developing CEPH compared with those <5.0 mg/dl. Median TB levels between ≥5.0 and <10.0 mg/dl and >10.0 mg/dl were associated with a 4.8 (95% CI, 2.4-9.7) and 15.6 (95% CI, 8.7-28.2) increased risk of transplantation relative to <5.0 mg/dl. Median TB <5.0 mg/dl were associated with higher NLS rates relative to ≥5.0 mg/dl, with 79% reaching adulthood with native liver ( p < 0.001). CONCLUSIONS: In this large international cohort of ALGS, only 40.3% of children reach adulthood with their native liver. A TB <5.0 mg/dl between 6 and 12 months of age is associated with better hepatic outcomes. These thresholds provide clinicians with an objective tool to assist with clinical decision-making and in the evaluation of therapies.
Assuntos
Síndrome de Alagille , Colestase , Hipertensão Portal , Humanos , Criança , Masculino , Feminino , Síndrome de Alagille/epidemiologia , Estudos Retrospectivos , Hipertensão Portal/etiologiaRESUMO
The microenvironment of lymphoid organs can aid healthy immune function through provision of both structural and molecular support. In mice, fibroblastic reticular cells (FRCs) create an essential T-cell support structure within lymph nodes, while human FRCs are largely unstudied. Here, we show that FRCs create a regulatory checkpoint in human peripheral T-cell activation through 4 mechanisms simultaneously utilised. Human tonsil and lymph node-derived FRCs constrained the proliferation of both naïve and pre-activated T cells, skewing their differentiation away from a central memory T-cell phenotype. FRCs acted unilaterally without requiring T-cell feedback, imposing suppression via indoleamine-2,3-dioxygenase, adenosine 2A Receptor, prostaglandin E2, and transforming growth factor beta receptor (TGFßR). Each mechanistic pathway was druggable, and a cocktail of inhibitors, targeting all 4 mechanisms, entirely reversed the suppressive effect of FRCs. T cells were not permanently anergised by FRCs, and studies using chimeric antigen receptor (CAR) T cells showed that immunotherapeutic T cells retained effector functions in the presence of FRCs. Since mice were not suitable as a proof-of-concept model, we instead developed a novel human tissue-based in situ assay. Human T cells stimulated using standard methods within fresh tonsil slices did not proliferate except in the presence of inhibitors described above. Collectively, we define a 4-part molecular mechanism by which FRCs regulate the T-cell response to strongly activating events in secondary lymphoid organs while permitting activated and CAR T cells to utilise effector functions. Our results define 4 feasible strategies, used alone or in combinations, to boost primary T-cell responses to infection or cancer by pharmacologically targeting FRCs.
Assuntos
Diferenciação Celular/imunologia , Microambiente Celular , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/citologia , Adulto , Proliferação de Células , Criança , Fibroblastos/citologia , Humanos , Memória Imunológica , FenótipoRESUMO
BACKGROUND: Pediatric retransplantation is an accepted practice for graft failure and complications in Australasia. As 15% of children require a third transplant, this is a growing cohort with limited data in the literature. METHODS: We review nine patients from the commencement of our transplantation program in 1986 up to 2020 assessing demographics, prognosis, and outcome measures. RESULTS: Third transplant patient survival was comparative to first and second transplant patient survival at 5 years. All deaths were within the post-operative period and secondary to sepsis. Operative times and transfusion volumes were increased at third transplant (1.8 and 4.5 times compared to first transplant, respectively). Learning difficulties and psychological disturbances were prevalent (83% and 66.6%, respectively). CONCLUSIONS: While recent mortality outcomes appear comparable to undergoing a second liver transplant, third transplant operations were more complex. Neurological impairment and psychological disturbance appear to be prevalent and need to be considered in pre-transplant counseling.
Assuntos
Transplante de Fígado/estatística & dados numéricos , Complicações Pós-Operatórias/cirurgia , Adolescente , Austrália , Criança , Pré-Escolar , Feminino , Rejeição de Enxerto , Sobrevivência de Enxerto , Humanos , Lactente , Masculino , Prognóstico , Reoperação/estatística & dados numéricosRESUMO
Recombinant adeno-associated viral (rAAV) vectors are highly promising vehicles for liver-targeted gene transfer, with therapeutic efficacy demonstrated in preclinical models and clinical trials. Progressive familial intrahepatic cholestasis type 3 (PFIC3), an inherited juvenile-onset, cholestatic liver disease caused by homozygous mutation of the ABCB4 gene, may be a promising candidate for rAAV-mediated liver-targeted gene therapy. The Abcb4-/- mice model of PFIC3, with juvenile mice developing progressive cholestatic liver injury due to impaired biliary phosphatidylcholine excretion, resulted in cirrhosis and liver malignancy. Using a conventional rAAV strategy, we observed markedly blunted rAAV transduction in adult Abcb4-/- mice with established liver disease, but not in disease-free, wild-type adults or in homozygous juveniles prior to liver disease onset. However, delivery of predominantly nonintegrating rAAV vectors to juvenile mice results in loss of persistent transgene expression due to hepatocyte proliferation in the growing liver. Conclusion: A hybrid vector system, combining the high transduction efficiency of rAAV with piggyBac transposase-mediated somatic integration, was developed to facilitate stable human ABCB4 expression in vivo and to correct juvenile-onset chronic liver disease in a murine model of PFIC3. A single dose of hybrid vector at birth led to life-long restoration of bile composition, prevention of biliary cirrhosis, and a substantial reduction in tumorigenesis. This powerful hybrid rAAV-piggyBac transposon vector strategy has the capacity to mediate lifelong phenotype correction and reduce the tumorigenicity of progressive familial intrahepatic cholestasis type 3 and, with further refinement, the potential for human clinical translation.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Colestase Intra-Hepática/prevenção & controle , Elementos de DNA Transponíveis/genética , Dependovirus/genética , Terapia Genética , Neoplasias Hepáticas Experimentais/prevenção & controle , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Humanos , Masculino , Camundongos , Transdução Genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
Neonatal liver disease encompasses many diagnoses, including structural and genetic aetiologies. Many have significant health implications requiring long-term specialist treatment including liver transplantation. Jaundice is a common presenting feature. The ability of health-care professionals to differentiate neonatal liver disease from benign diagnoses such as physiological jaundice is very important. Persistent (more than 2 weeks) of conjugated jaundice always warrants investigation. Severe unconjugated jaundice (requiring prolonged phototherapy) should also be promptly investigated. Recent advances in genomics have enabled previously elusive, precise diagnoses in some patients with neonatal liver disease. This review paper discusses the commoner causes, with a focus on early detection and need for referral to paediatric liver services.
Assuntos
Colestase , Icterícia Neonatal , Icterícia , Hepatopatias , Criança , Humanos , Recém-Nascido , Icterícia Neonatal/diagnóstico , Icterícia Neonatal/etiologia , Icterícia Neonatal/terapia , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Hepatopatias/terapiaRESUMO
UNLABELLED: Liver-targeted gene therapy based on recombinant adeno-associated viral vectors (rAAV) shows promising therapeutic efficacy in animal models and adult-focused clinical trials. This promise, however, is not directly translatable to the growing liver, where high rates of hepatocellular proliferation are accompanied by loss of episomal rAAV genomes and subsequently a loss in therapeutic efficacy. We have developed a hybrid rAAV/piggyBac transposon vector system combining the highly efficient liver-targeting properties of rAAV with stable piggyBac-mediated transposition of the transgene into the hepatocyte genome. Transposition efficiency was first tested using an enhanced green fluorescent protein expression cassette following delivery to newborn wild-type mice, with a 20-fold increase in stably gene-modified hepatocytes observed 4 weeks posttreatment compared to traditional rAAV gene delivery. We next modeled the therapeutic potential of the system in the context of severe urea cycle defects. A single treatment in the perinatal period was sufficient to confer robust and stable phenotype correction in the ornithine transcarbamylase-deficient Spf(ash) mouse and the neonatal lethal argininosuccinate synthetase knockout mouse. Finally, transposon integration patterns were analyzed, revealing 127,386 unique integration sites which conformed to previously published piggyBac data. CONCLUSION: Using a hybrid rAAV/piggyBac transposon vector system, we achieved stable therapeutic protection in two urea cycle defect mouse models; a clinically conceivable early application of this technology in the management of severe urea cycle defects could be as a bridging therapy while awaiting liver transplantation; further improvement of the system will result from the development of highly human liver-tropic capsids, the use of alternative strategies to achieve transient transposase expression, and engineered refinements in the safety profile of piggyBac transposase-mediated integration.
Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Vetores Genéticos/farmacologia , Hiperamonemia/terapia , Ureia/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Hiperamonemia/diagnóstico , Hepatopatias/terapia , Camundongos , Camundongos Transgênicos , Índice de Gravidade de Doença , Estatísticas não ParamétricasAssuntos
Colestase/etiologia , Testes Genéticos/métodos , Icterícia Idiopática Crônica/diagnóstico , Icterícia Idiopática Crônica/genética , Porfirinas/urina , Biópsia por Agulha , Colestase/diagnóstico , Colestase/genética , Diagnóstico Diferencial , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Recém-Nascido , Hepatopatias , Testes de Função Hepática , Doenças Raras , Fatores de Tempo , UrináliseRESUMO
Viral vectors based on adeno-associated virus (AAV) are showing exciting promise in gene therapy trials targeting the adult liver. A major challenge in extending this promise to the pediatric liver is the loss of episomal vector genomes that accompanies hepatocellular proliferation during liver growth. Hence maintenance of sufficient transgene expression will be critical for success in infants and children. We therefore set out to explore the therapeutic efficacy and durability of liver-targeted gene transfer in the challenging context of a neonatal lethal urea cycle defect, using the argininosuccinate synthetase deficient mouse. Lethal neonatal hyperammonemia was prevented by prenatal and early postnatal vector delivery; however, hyperammonemia subsequently recurred limiting survival to no more than 33 days despite vector readministration. Antivector antibodies acquired in milk from vector-exposed dams were subsequently shown to be blocking vector readministration, and were avoided by crossfostering vector-treated pups to vector-naive dams. In the absence of passively acquired antivector antibodies, vector redelivery proved efficacious with mice surviving to adulthood without recurrence of significant hyperammonemia. These data demonstrate the potential of AAV vectors in the developing liver, showing that vector readministration can be used to counter growth-associated loss of transgene expression provided the challenge of antivector humoral immunity is addressed.
Assuntos
Argininossuccinato Sintase/genética , Citrulinemia/terapia , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Animais , Animais Recém-Nascidos , Argininossuccinato Sintase/deficiência , Citrulinemia/genética , Citrulinemia/mortalidade , Feminino , Terapias Fetais , Fetoscopia , Células HEK293 , Humanos , Hiperamonemia/etiologia , Imunidade Materno-Adquirida , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Gravidez , TransgenesRESUMO
Realization of the immense therapeutic potential of epigenetic editing requires development of clinically predictive model systems that faithfully recapitulate relevant aspects of the target disease pathophysiology. In female patients with ornithine transcarbamylase (OTC) deficiency, an X-linked condition, skewed inactivation of the X chromosome carrying the wild-type OTC allele is associated with increased disease severity. The majority of affected female patients can be managed medically, but a proportion require liver transplantation. With rapid development of epigenetic editing technology, reactivation of silenced wild-type OTC alleles is becoming an increasingly plausible therapeutic approach. Toward this end, privileged access to explanted diseased livers from two affected female infants provided the opportunity to explore whether engraftment and expansion of dissociated patient-derived hepatocytes in the FRG mouse might produce a relevant model for evaluation of epigenetic interventions. Hepatocytes from both infants were successfully used to generate chimeric mouse-human livers, in which clusters of primary human hepatocytes were either OTC positive or negative by immunohistochemistry (IHC), consistent with clonal expansion from individual hepatocytes in which the mutant or wild-type OTC allele was inactivated, respectively. Enumeration of the proportion of OTC-positive or -negative human hepatocyte clusters was consistent with dramatic skewing in one infant and minimal to modest skewing in the other. Importantly, IHC and fluorescence-activated cell sorting analysis of intact and dissociated liver samples from both infants showed qualitatively similar patterns, confirming that the chimeric mouse-human liver model recapitulated the native state in each infant. Also of importance was the induction of a treatable metabolic phenotype, orotic aciduria, in mice, which correlated with the presence of clonally expanded OTC-negative primary human hepatocytes. We are currently using this unique model to explore CRISPR-dCas9-based epigenetic targeting strategies in combination with efficient adeno-associated virus (AAV) gene delivery to reactivate the silenced functional OTC gene on the inactive X chromosome.