RESUMO
The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.
Assuntos
COVID-19/genética , Infecções por Coronavirus/genética , Coronavirus/fisiologia , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Células A549 , Animais , Vias Biossintéticas/efeitos dos fármacos , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Colesterol/biossíntese , Colesterol/metabolismo , Análise por Conglomerados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resfriado Comum/genética , Resfriado Comum/virologia , Coronavirus/classificação , Infecções por Coronavirus/virologia , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Fosfatidilinositóis/biossíntese , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação ViralRESUMO
The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved â¼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.
Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Telefone Celular/instrumentação , Imagem Óptica/métodos , RNA Viral/análise , Carga Viral/métodos , Animais , Teste de Ácido Nucleico para COVID-19/economia , Teste de Ácido Nucleico para COVID-19/instrumentação , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Nasofaringe/virologia , Imagem Óptica/instrumentação , Fosfoproteínas/genética , Testes Imediatos , Interferência de RNA , RNA Viral/genética , Sensibilidade e Especificidade , Carga Viral/economia , Carga Viral/instrumentaçãoRESUMO
Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome of Neurospora crassa, most of the 670 Neurospora LSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts of adv-1 and pp-1 that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation in Neurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.
Assuntos
Neurospora crassa , Neurospora , Neurospora/genética , Genes Fúngicos , Neurospora crassa/genética , Fenótipo , Perfilação da Expressão Gênica , Reprodução/genética , Proteínas Fúngicas/genéticaRESUMO
Coccidioides spp. are mammalian fungal pathogens endemic to the Southwestern US and other desert regions of Mexico, Central and South America, with the bulk of US infections occurring in California and Arizona. In the soil, Coccidioides grows in a hyphal form that differentiates into 3-5 micron asexual spores (arthroconidia). When arthroconidia are inhaled by mammals they undergo a unique developmental transition from polar hyphal growth to isotropic expansion with multiple rounds of nuclear division, prior to segmentation, forming large spherules filled with endospores. Very little is understood about the molecular basis of spherule formation. Here we characterize the role of the conserved transcription factor Ryp1 in Coccidioides development. We show that Coccidioides Δryp1 mutants have altered colony morphology under hypha-promoting conditions and are unable to form mature spherules under spherule-promoting conditions. We analyze the transcriptional profile of wild-type and Δryp1 mutant cells under hypha- and spherule-promoting conditions, thereby defining a set of hypha- or spherule-enriched transcripts ("morphology-regulated" genes) that are dependent on Ryp1 for their expression. Forty percent of morphology-regulated expression is Ryp1-dependent, indicating that Ryp1 plays a dual role in both hyphal and spherule development. Ryp1-dependent transcripts include key virulence factors such as SOWgp, which encodes the spherule outer wall glycoprotein. Concordant with its role in spherule development, we find that the Δryp1 mutant is completely avirulent in the mouse model of coccidioidomycosis, indicating that Ryp1-dependent pathways are essential for the ability of Coccidioides to cause disease. Vaccination of C57BL/6 mice with live Δryp1 spores does not provide any protection from lethal C. posadasii intranasal infection, consistent with our findings that the Δryp1 mutant fails to make mature spherules and likely does not express key antigens required for effective vaccination. Taken together, this work identifies the first transcription factor that drives mature spherulation and virulence in Coccidioides.
Assuntos
Coccidioides , Fatores de Transcrição , Animais , Coccidioides/genética , Proteínas Fúngicas , Expressão Gênica , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Esporos Fúngicos/genética , Fatores de Transcrição/genética , VirulênciaRESUMO
Intracellular pathogens secrete effectors to manipulate their host cells. Histoplasma capsulatum (Hc) is a fungal intracellular pathogen of humans that grows in a yeast form in the host. Hc yeasts are phagocytosed by macrophages, where fungal intracellular replication precedes macrophage lysis. The most abundant virulence factor secreted by Hc yeast cells is Calcium Binding Protein 1 (Cbp1), which is absolutely required for macrophage lysis. Here we take an evolutionary, structural, and cell biological approach to understand Cbp1 function. We find that Cbp1 is present only in the genomes of closely related dimorphic fungal species of the Ajellomycetaceae family that lead primarily intracellular lifestyles in their mammalian hosts (Histoplasma, Paracoccidioides, and Emergomyces), but not conserved in the extracellular fungal pathogen Blastomyces dermatitidis. We observe a high rate of fixation of non-synonymous substitutions in the Cbp1 coding sequences, indicating that Cbp1 is under positive selection. We determine the de novo structures of Hc H88 Cbp1 and the Paracoccidioides americana (Pb03) Cbp1, revealing a novel "binocular" fold consisting of a helical dimer arrangement wherein two helices from each monomer contribute to a four-helix bundle. In contrast to Pb03 Cbp1, we show that Emergomyces Cbp1 orthologs are unable to stimulate macrophage lysis when expressed in the Hc cbp1 mutant. Consistent with this result, we find that wild-type Emergomyces africanus yeast are able to grow within primary macrophages but are incapable of lysing them. Finally, we use subcellular fractionation of infected macrophages and indirect immunofluorescence to show that Cbp1 localizes to the macrophage cytosol during Hc infection, making this the first instance of a phagosomal human fungal pathogen directing an effector into the cytosol of the host cell. We additionally show that Cbp1 forms a complex with Yps-3, another known Hc virulence factor that accesses the cytosol. Taken together, these data imply that Cbp1 is a fungal virulence factor under positive selection that localizes to the cytosol to trigger host cell lysis.
Assuntos
Proteínas de Ligação ao Cálcio , Histoplasmose , Macrófagos , Fatores de Virulência , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histoplasma/metabolismo , Histoplasmose/microbiologia , Humanos , Macrófagos/microbiologia , Mamíferos , Saccharomyces cerevisiae , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that complement components react with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage interactions with fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc, the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during Hc infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi.
Assuntos
Actinas , Histoplasmose , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Histoplasma/genética , Histoplasma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fragmentos de PeptídeosRESUMO
[This corrects the article DOI: 10.1371/journal.pgen.1005395.].
RESUMO
Rationale: Autopsy and biomarker studies suggest that endotheliopathy contributes to coronavirus disease (COVID-19)-associated acute respiratory distress syndrome. However, the effects of COVID-19 on the lung endothelium are not well defined. We hypothesized that the lung endotheliopathy of COVID-19 is caused by circulating host factors and direct endothelial infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives: We aimed to determine the effects of SARS-CoV-2 or sera from patients with COVID-19 on the permeability and inflammatory activation of lung microvascular endothelial cells. Methods: Human lung microvascular endothelial cells were treated with live SARS-CoV-2; inactivated viral particles; or sera from patients with COVID-19, patients without COVID-19, and healthy volunteers. Permeability was determined by measuring transendothelial resistance to electrical current flow, where decreased resistance signifies increased permeability. Inflammatory mediators were quantified in culture supernatants. Endothelial biomarkers were quantified in patient sera. Measurements and Main Results: Viral PCR confirmed that SARS-CoV-2 enters and replicates in endothelial cells. Live SARS-CoV-2, but not dead virus or spike protein, induces endothelial permeability and secretion of plasminogen activator inhibitor 1 and vascular endothelial growth factor. There was substantial variability in the effects of SARS-CoV-2 on endothelial cells from different donors. Sera from patients with COVID-19 induced endothelial permeability, which correlated with disease severity. Serum levels of endothelial activation and injury biomarkers were increased in patients with COVID-19 and correlated with severity of illness. Conclusions: SARS-CoV-2 infects and dysregulates endothelial cell functions. Circulating factors in patients with COVID-19 also induce endothelial cell dysfunction. Our data point to roles for both systemic factors acting on lung endothelial cells and viral infection of endothelial cells in COVID-19-associated endotheliopathy.
Assuntos
COVID-19 , Doenças Vasculares , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Pulmão , Inibidor 1 de Ativador de Plasminogênio/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Doenças Vasculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Phenotypic switching between 2 opposing cellular states is a fundamental aspect of biology, and fungi provide facile systems to analyze the interactions between regulons that control this type of switch. A long-standing mystery in fungal pathogens of humans is how thermally dimorphic fungi switch their developmental form in response to temperature. These fungi, including the subject of this study, Histoplasma capsulatum, are temperature-responsive organisms that utilize unknown regulatory pathways to couple their cell shape and associated attributes to the temperature of their environment. H. capsulatum grows as a multicellular hypha in the soil that switches to a pathogenic yeast form in response to the temperature of a mammalian host. These states can be triggered in the laboratory simply by growing the fungus either at room temperature (RT; which promotes hyphal growth) or at 37 °C (which promotes yeast-phase growth). Prior worked revealed that 15% to 20% of transcripts are differentially expressed in response to temperature, but it is unclear which transcripts are linked to specific phenotypic changes, such as cell morphology or virulence. To elucidate temperature-responsive regulons, we previously identified 4 transcription factors (required for yeast-phase growth [Ryp]1-4) that are required for yeast-phase growth at 37 °C; in each ryp mutant, the fungus grows constitutively as hyphae regardless of temperature, and the cells fail to express genes that are normally induced in response to growth at 37 °C. Here, we perform the first genetic screen to identify genes required for hyphal growth of H. capsulatum at RT and find that disruption of the signaling mucin MSB2 results in a yeast-locked phenotype. RNA sequencing (RNAseq) experiments reveal that MSB2 is not required for the majority of gene expression changes that occur when cells are shifted to RT. However, a small subset of temperature-responsive genes is dependent on MSB2 for its expression, thereby implicating these genes in the process of filamentation. Disruption or knockdown of an Msb2-dependent mitogen-activated protein (MAP) kinase (HOG2) and an APSES transcription factor (STU1) prevents hyphal growth at RT, validating that the Msb2 regulon contains genes that control filamentation. Notably, the Msb2 regulon shows conserved hyphal-specific expression in other dimorphic fungi, suggesting that this work defines a small set of genes that are likely to be conserved regulators and effectors of filamentation in multiple fungi. In contrast, a few yeast-specific transcripts, including virulence factors that are normally expressed only at 37 °C, are inappropriately expressed at RT in the msb2 mutant, suggesting that expression of these genes is coupled to growth in the yeast form rather than to temperature. Finally, we find that the yeast-promoting transcription factor Ryp3 associates with the MSB2 promoter and inhibits MSB2 transcript expression at 37 °C, whereas Msb2 inhibits accumulation of Ryp transcripts and proteins at RT. These findings indicate that the Ryp and Msb2 circuits antagonize each other in a temperature-dependent manner, thereby allowing temperature to govern cell shape and gene expression in this ubiquitous fungal pathogen of humans.
Assuntos
Regulação Fúngica da Expressão Gênica , Histoplasma/fisiologia , Hifas/crescimento & desenvolvimento , Mucinas/metabolismo , Transdução de Sinais , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Histoplasma/citologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucinas/genética , TemperaturaRESUMO
The ability of intracellular pathogens to manipulate host-cell viability is critical to successful infection. Some pathogens promote host-cell survival to protect their replicative niche, whereas others trigger host-cell death to facilitate release and dissemination of the pathogen after intracellular replication has occurred. We previously showed that the intracellular fungal pathogen Histoplasma capsulatum (Hc) uses the secreted protein Cbp1 to actively induce apoptosis in macrophages; interestingly, cbp1 mutant strains are unable to kill macrophages and display severely reduced virulence in the mouse model of Hc infection. To elucidate the mechanism of Cbp1-induced host-cell death, we performed a comprehensive alanine scanning mutagenesis and identified all amino acid residues that are required for Cbp1 to trigger macrophage lysis. Here we demonstrate that Hc strains expressing lytic CBP1 alleles activate the integrated stress response (ISR) in infected macrophages, as indicated by an increase in eIF2α phosphorylation as well as induction of the transcription factor CHOP and the pseudokinase Tribbles 3 (TRIB3). In contrast, strains bearing a non-lytic allele of CBP1 fail to activate the ISR, whereas a partially lytic CBP1 allele triggers intermediate levels of activation. We further show that macrophages deficient for CHOP or TRIB3 are partially resistant to lysis during Hc infection, indicating that the ISR is critical for susceptibility to Hc-mediated cell death. Moreover, we show that CHOP-dependent macrophage lysis is critical for efficient spread of Hc infection to other macrophages. Notably, CHOP knockout mice display reduced macrophage apoptosis and diminished fungal burden and are markedly resistant to Hc infection. Together, these data indicate that Cbp1 is required for Hc to induce the ISR and mediate a CHOP-dependent virulence pathway in the host.
Assuntos
Apoptose/imunologia , Genes Fúngicos/genética , Histoplasma/metabolismo , Histoplasmose/microbiologia , Macrófagos/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/microbiologia , Camundongos , Virulência/genéticaRESUMO
Innate immune cells shape the host response to microbial pathogens. Here we elucidate critical differences in the molecular response of macrophages vs. dendritic cells (DCs) to Histoplasma capsulatum, an intracellular fungal pathogen of humans. It has long been known that macrophages are permissive for Histoplasma growth and succumb to infection, whereas DCs restrict fungal growth and survive infection. We used murine macrophages and DCs to identify host pathways that influence fungal proliferation and host-cell viability. Transcriptional profiling experiments revealed that DCs produced a strong Type I interferon (IFN-I) response to infection with Histoplasma yeasts. Toll-like receptors 7 and 9 (TLR7/9), which recognize nucleic acids, were required for IFN-I production and restriction of fungal growth in DCs, but mutation of TLR7/9 had no effect on the outcome of macrophage infection. Moreover, TLR7/9 were essential for the ability of infected DCs to elicit production of the critical cytokine IFNγ from primed CD4+ T cells in vitro, indicating the role of this pathway in T cell activation. In a mouse model of infection, TLR7/9 were required for optimal production of IFN-I and IFNγ, host survival, and restriction of cerebral fungal burden. These data demonstrate the critical role of this pathway in eliciting an appropriate adaptive immune response in the host. Finally, although other fungal pathogens have been shown to elicit IFN-I in mouse models, the specific host cell responsible for producing IFN-I has not been elucidated. We found that CD103+ conventional DCs were the major producer of IFN-I in the lungs of wild-type mice infected with Histoplasma. Mice deficient in this DC subtype displayed reduced IFN-I production in vivo. These data reveal a previously unknown role for CD103+ conventional DCs and uncover the pivotal function of these cells in modulating the host immune response to endemic fungi.
Assuntos
Células Dendríticas/imunologia , Histoplasmose/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Imunidade Adaptativa/imunologia , Animais , Antígenos CD/imunologia , Técnicas de Cocultura , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/parasitologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Histoplasma/imunologia , Humanos , Cadeias alfa de Integrinas/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5' leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.
Assuntos
Regulação Fúngica da Expressão Gênica , Histoplasma/genética , Interações Hospedeiro-Patógeno/genética , Transcrição Gênica , Proteínas Fúngicas/biossíntese , Histoplasma/patogenicidade , Humanos , RNA Mensageiro/genética , Ribossomos/genética , TemperaturaRESUMO
Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally, Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular , Histoplasma/fisiologia , Histoplasmose/microbiologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Caspases/genética , Caspases/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Genes Fúngicos , Genoma Fúngico , Histoplasma/crescimento & desenvolvimento , Histoplasma/patogenicidade , Camundongos , Dados de Sequência Molecular , Mutação , Fatores de Virulência/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genéticaRESUMO
Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature.
Assuntos
Histoplasma/patogenicidade , Virulência/fisiologia , Imunoprecipitação da Cromatina , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Histoplasma/genética , Temperatura , Virulência/genéticaRESUMO
The monosaccharide N-acetylglucosamine (GlcNAc) is a major component of microbial cell walls and is ubiquitous in the environment. GlcNAc stimulates developmental pathways in the fungal pathogen Candida albicans, which is a commensal organism that colonizes the mammalian gut and causes disease in the setting of host immunodeficiency. Here we investigate GlcNAc signaling in thermally dimorphic human fungal pathogens, a group of fungi that are highly evolutionarily diverged from C. albicans and cause disease even in healthy individuals. These soil organisms grow as polarized, multicellular hyphal filaments that transition into a unicellular, pathogenic yeast form when inhaled by a human host. Temperature is the primary environmental cue that promotes reversible cellular differentiation into either yeast or filaments; however, a shift to a lower temperature in vitro induces filamentous growth in an inefficient and asynchronous manner. We found GlcNAc to be a potent and specific inducer of the yeast-to-filament transition in two thermally dimorphic fungi, Histoplasma capsulatum and Blastomyces dermatitidis. In addition to increasing the rate of filamentous growth, micromolar concentrations of GlcNAc induced a robust morphological transition of H. capsulatum after temperature shift that was independent of GlcNAc catabolism, indicating that fungal cells sense GlcNAc to promote filamentation. Whole-genome expression profiling to identify candidate genes involved in establishing the filamentous growth program uncovered two genes encoding GlcNAc transporters, NGT1 and NGT2, that were necessary for H. capsulatum cells to robustly filament in response to GlcNAc. Unexpectedly, NGT1 and NGT2 were important for efficient H. capsulatum yeast-to-filament conversion in standard glucose medium, suggesting that Ngt1 and Ngt2 monitor endogenous levels of GlcNAc to control multicellular filamentous growth in response to temperature. Overall, our work indicates that GlcNAc functions as a highly conserved cue of morphogenesis in fungi, which further enhances the significance of this ubiquitous sugar in cellular signaling in eukaryotes.
Assuntos
Acetilglucosamina/genética , Blastomyces/genética , Candida albicans/genética , Histoplasma/genética , Morfogênese , Acetilglucosamina/metabolismo , Blastomyces/patogenicidade , Candida albicans/patogenicidade , Parede Celular/metabolismo , Fungos/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Histoplasma/patogenicidade , Humanos , Transdução de Sinais , Microbiologia do Solo , TemperaturaRESUMO
The ability of the innate immune system to trigger an adaptive T cell response is critical to resolution of infection with the fungal pathogen Histoplasma capsulatum. However, the signaling pathways and cell types involved in the recognition of and response to this respiratory pathogen remain poorly defined. Here, we show that MyD88, an adaptor protein vital to multiple innate immune pathways, is critically required for the host response to Histoplasma. MyD88-deficient (MyD88-/-) mice are unable to control the fungal burden and are more sensitive to Histoplasma infection than wild-type, Dectin-1-/-, or interleukin 1 receptor-deficient (IL-1R-/-) mice. We found that MyD88 is necessary for the production of key early inflammatory cytokines and the subsequent recruitment of inflammatory monocytes to the lung. In both our in vitro and ex vivo analyses, MyD88 was intrinsically required in dendritic cells and alveolar macrophages for initial cytokine production. Additionally, MyD88-deficient bone marrow-derived dendritic cells fail to efficiently control fungal growth when cocultured with primed splenic T cells. Surprisingly, mice that lack MyD88 only in dendritic cells and alveolar macrophages are competent for early cytokine production and normal survival, indicating the presence of compensatory and redundant MyD88 signaling in other cell types during infection. Ultimately, global MyD88 deficiency prevents proper T cell activation and gamma interferon (IFN-γ) production, which are critical for infection resolution. Collectively, this work reveals a central role for MyD88 in coordinating the innate and adaptive immune responses to infection with this ubiquitous fungal pathogen of humans.
Assuntos
Imunidade Adaptativa , Histoplasma/imunologia , Histoplasmose/imunologia , Imunidade Inata , Fator 88 de Diferenciação Mieloide/imunologia , Animais , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Inflamação/genética , Inflamação/imunologia , Interferon gama/biossíntese , Lectinas Tipo C/genética , Pulmão/citologia , Pulmão/imunologia , Pulmão/microbiologia , Ativação Linfocitária/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Receptores de Interleucina-1/genética , Transdução de Sinais/imunologiaRESUMO
Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia.
Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histoplasma/genética , Micélio/genética , RNA Fúngico/genética , Esporos Fúngicos/genética , Transcriptoma , Animais , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histoplasma/metabolismo , Histoplasma/patogenicidade , Histoplasmose/microbiologia , Humanos , Macrófagos/microbiologia , Camundongos , Anotação de Sequência Molecular , Micélio/metabolismo , Micélio/patogenicidade , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , VirulênciaRESUMO
Coccidioides spp . are part of a group of thermally dimorphic fungal pathogens, which grow as filamentous cells (hyphae) in the soil and transform to a different morphology upon inhalation into the host. The Coccidioides host form, the spherule, is unique and highly under characterized due to both technical and biocontainment challenges. Each spherule arises from an environmental spore (arthroconidium), matures, and develops hundreds of internal endospores, which are released from the spherule upon rupture. Each endospore can then go on to form another spherule in a cycle called spherulation. One of the foremost technical challenges has been reliably growing spherules in culture without the formation of contaminating hyphae, and consistently inducing endospore release from spherules. Here, we present optimization of in vitro spherule growth and endospore release, by closely controlling starting cell density in the culture, using freshly-harvested arthroconidia, and decreasing the concentration of multiple salts in spherulation media. We developed a minimal media to test spherule growth on various carbon and nitrogen sources. We defined a critical role for the dispersant Tamol in both early spherule formation and prevention of the accumulation of a visible film around spherules. Finally, we examined how the conditions under which arthroconidia are generated influence their transcriptome and subsequent development into spherules, demonstrating that this is an important variable to control when designing spherulation experiments. Together, our data reveal multiple strategies to optimize in vitro spherulation growth, enabling characterization of this virulence-relevant morphology.
RESUMO
Coccidioides spp. are highly understudied but significant dimorphic fungal pathogens that can infect both immunocompetent and immunocompromised people. In the environment, they grow as multicellular filaments (hyphae) that produce vegetative spores called arthroconidia. Upon inhalation by mammals, arthroconidia undergo a process called spherulation. They enlarge and undergo numerous nuclear divisions to form a spherical structure, and then internally segment until the spherule is filled with multiple cells called endospores. Mature spherules rupture and release endospores, each of which can form another spherule, in a process thought to facilitate dissemination. Spherulation is unique to Coccidioides and its molecular determinants remain largely unknown. Here, we report the first high-density transcriptomic analyses of Coccidioides development, defining morphology-dependent transcripts and those whose expression is regulated by Ryp1, a major regulator required for spherulation and virulence. Of approximately 9000 predicted transcripts, we discovered 273 transcripts with consistent spherule-associated expression, 82 of which are RYP1-dependent, a set likely to be critical for Coccidioides virulence. ChIP-Seq revealed 2 distinct regulons of Ryp1, one shared between hyphae and spherules and the other unique to spherules. Spherulation regulation was elaborate, with the majority of 227 predicted transcription factors in Coccidioides displaying spherule-enriched expression. We identified provocative targets, including 20 transcripts whose expression is endospore-enriched and 14 putative secreted effectors whose expression is spherule-enriched, of which 6 are secreted proteases. To highlight the utility of these data, we selected a cluster of RYP1-dependent, arthroconidia-associated transcripts and found that they play a role in arthroconidia cell wall biology, demonstrating the power of this resource in illuminating Coccidioides biology and virulence.