RESUMO
The visualization and spatiotemporal monitoring of endogenous esterase activity are crucial for clinical diagnostics and treatment of liver diseases. Our research adopts a novel substrate hydrolysis-enzymatic activity (SHEA) approach using dicyanoisophorone-based fluorogenic ester substrates DCIP-R (R = R1-R6) to evaluate esterase preferences on diverse substrate libraries. Esterase-mediated hydrolysis yielded fluorescent DCIP-OH with a nanomolar detection limit in vitro. These probes effectively monitor ester hydrolysis kinetics with a turnover number of 4.73 s-1 and catalytic efficiency (kcat/Km) of 106 M-1 s-1 (DCIP-R1). Comparative studies utilizing two-photon imaging have indicated that substrates containing alkyl groups (DCIP-R1) as recognition elements exhibit enhanced enzymatic cleavage compared to those containing phenyl substitution on alkyl chains (DCIP-R4). Time-dependent variations in endogenous esterase levels were tracked in healthy and liver tumor models, especially in diethylnitrosamine (DEN)-induced tumors and HepG2-transplanted liver tumors. Overall, fluorescence signal quantifications demonstrated the excellent proficiency of DCIP-R1 in detecting esterase activity both in vitro and in vivo, showing promising potential for biomedical applications.
RESUMO
Peroxynitrite (ONOO-), a highly reactive species, plays a key role in various physiological and pathological processes. Herein, a red-emitting fluorescent reporter perylenemonoimide-boronate ester (PMI-BE) was synthesized and utilized for ultrasensitive detection of ONOO-. The unique feature of PMI-BE is its nanomolar sensitivity with high selectivity towards ONOO-. Moreover, PMI-BE also detects endogenously generated ONOO- in live cells.
Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Ésteres , ImidasRESUMO
Extracellular metallic debris is deposited into the well-known 'recycle bins' of the cells named lysosomes. The accumulation of unwanted metal ions can cause dysfunction of hydrolyzing enzymes and membrane rupturing. Thus, herein, we synthesized rhodamine-acetophenone/benzaldehyde derivatives for the detection of trivalent metal ions in aqueous media. In solution, the synthesized probes exhibited a 'turn-on' colorimetric and fluorometric response upon complexation with trivalent metal ions (M3+). Mechanistically, M3+ chelation enables the appearance of a new emission band at approximately 550 nm, which verifies the disruption of the closed ring and the restoration of conjugation on the xanthene core in rhodamine 6G derivatives. Exclusive localization of the biocompatible probes at the lysosomal compartment favored the quantification of deposited Al3+. Moreover, the novelty of the work lies in the detection of Al3+ deposited in the lysosome that originated from hepatitis B vaccines, which shows their efficiency for near future in vivo applications.
Assuntos
Corantes Fluorescentes , Vacinas , Corantes Fluorescentes/toxicidade , Rodaminas , Íons , Metais , LisossomosRESUMO
This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.
Assuntos
Antineoplásicos , Portadores de Fármacos , Raios Infravermelhos , Terapia Fototérmica , Humanos , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Animais , Neoplasias/tratamento farmacológico , Liberação Controlada de Fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de MedicamentosRESUMO
The dysfunctions in the mitochondria are associated with various pathological conditions like neurodegeneration, metabolic disorder, and cancer, leading to dysregulated cell death. Here, we have designed and synthesized a julolidine-based molecular rotor (JMT) to target mitochondria with far-red emission accounting for mitochondrial dysfunction. JMT showed viscosity sensitivity with 160-fold enhancement in fluorescence intensity. The origin of the dark state in a lower viscous environment was investigated through density functional calculations. We have employed JMT to monitor mitochondrial dysfunction induced by nystatin using confocal and fluorescence lifetime imaging microscopy. Further, we investigated mitochondrial abnormalities under inflammatory conditions triggered by lipopolysaccharide in live HeLa cells. The cellular uptake mechanisms of JMT were studied using various endocytosis inhibitors. Moreover, we reported tracking small fluorescent molecule switching from mitochondria to the plasma membrane upon introducing mitochondrial depolarizer in cells. On treating the mitochondria potential uncoupler, JMT relocates to the cell membrane and can be utilized for understanding the interplay between mitochondria and cell membranes. Moreover, JMT was applied to stain the RBC plasma membrane isolated from human blood.
Assuntos
Corantes Fluorescentes , Doenças Mitocondriais , Humanos , Células HeLa , Viscosidade , Corantes Fluorescentes/metabolismo , Mitocôndrias/metabolismo , Membrana Celular/metabolismo , Doenças Mitocondriais/metabolismoRESUMO
Metal ions are indispensable and play an important role in living systems. Metal ions coordinated to metalloenzymes pocket activate the bound substrate and labile metal ions maintaining the ionic balance. The amount of metal ions present in various subcellular compartments of the cells is highly regulated for maintaining cellular homeostasis. An imbalance in the metal ion concentration is related to several diseases and results in serious pathological conditions. Mostly the internalized metal ions are processed in the lysosomal compartment of the cell. A delicate regulation of metal ions in the lysosomal compartment can modulate the lysosomal pH and inhibit hydrolytic enzymes, which ultimately causes lysosomal storage disorders. In the past decade, the understanding and regulation of lysosomal metal ions based on fluorometric methods have gained significant attention. In this review, we have comprehensively summarized the development of various fluorescent reporters over the past five years for a selective and sensitive estimation of lysosomal metal ion concentration. We believe this consolidated and timely review will help researchers working in the areas associated with lysosomal metal ions.
RESUMO
The synthesis of a Schiff base-based chemosensor, denoted as H6L, was accomplished through the condensation reaction of Isophthalohydrazide and 2,6-dihydroxybenzaldehyde in an ethanol solvent. The resulting compound was further characterized using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, as well as high-resolution mass spectrometry (HRMS). Extensive research has been conducted on several facets of metal sensing phenomena, revealing that the Schiff base H6L demonstrates discerning and expeditious fluorescence sensing characteristics specifically towards Al (III) in acetonitrile. The purported method detects Al (III) can be ascribed to the suppression of photo-induced electron transfer (PET) and the enhanced chelation-induced fluorescence (CHEF). The stoichiometry of metal-ligand complexes (2:1) was determined using Job's plots titrations, HRMS and subsequently confirmed using NMR titration studies. The H6L sensors demonstrated remarkable fluorescence sensing capabilities in acetonitrile, with a low detection limit (LOD) of 0.44 µM. This LOD is suitably low for the detection of Al3+, which is commonly found in many environmental and biological systems. Fluorescence lifetime measurement provides additional evidence of complexation of H6L with Al (III). The reversibility of the sensor was demonstrated through the introduction of pyrophosphate (PPi), which forms a complex with aluminium ions, thereby releasing the chemo sensor for subsequent utilization. The findings suggest that H6L has the potential to serve as a viable probe for the detection and identification of Al3+ ions.
RESUMO
Ferroptosis is a unique non-apoptotic cell death process associated with endoplasmic reticulum (ER) stress-related diseases. We have designed and synthesized a far-red emitting and ER targetable viscosity-sensitive fluorophore to track ER-phagy. Furthermore, the ER viscosity alteration during the ferroptosis process was investigated via intensity and lifetime-based spectroscopy and microscopy.
Assuntos
Estresse do Retículo Endoplasmático , Ferroptose , Estresse do Retículo Endoplasmático/fisiologia , Sondas Moleculares/metabolismo , Viscosidade , Retículo Endoplasmático/metabolismo , Autofagia/fisiologiaRESUMO
Lysosomal labile iron detection is immensely important as it is related to various diseases like Alzheimer's disease, Huntington's disease, Parkinson's disease, and cell apoptosis like ferroptosis. The fluorescent-based detection methods are preferred due to their sensitive, non-invasive, and spatial-temporal detection in biological samples. However, this remains a great challenge due to the lysosomal compartment being acidic alters the photophysical properties of the probe. Herein, we have rationally designed and synthesized multi-component naphthalimide-based fluorescent marker with preferred optical properties and bio-compatibility for selective detection of labile iron present in the lysosomal compartment. The synthesized probe was characterized structurally and optically by NMR, mass spectrometry, UV-visible, and fluorescence spectroscopy. The developed probe with an appropriate linking strategy turns out to be tolerant to fluorescence alternation in lysosomal pH. The probe exhibits great selectivity and high sensitivity for Fe(III) with limit of detection of 0.44 µM and is also able to detect Fenton-type reactions. Further, the probe has been successfully applied for lysosomal imaging and detecting labile Fe(III) present in the lysosomal lumen of the live cells.
Assuntos
Corantes Fluorescentes , Ferro , Corantes Fluorescentes/química , Ferro/química , Naftalimidas/química , Diagnóstico por Imagem , Espectrometria de Fluorescência , Lisossomos/químicaRESUMO
The cellular physiochemical properties such as polarity, viscosity, and pH play a critical role in cellular homeostasis. The dynamic change of lysosomal viscosity in live cells associated with different environmental stress remains enigmatic and needs to be explored. We have developed a new class of Julolidine-based molecular viscometers with an extended π-conjugation to probe the lysosomal viscosity in live cells. High biocompatibility, pH tolerance, and the fluorogenic response with far red-emission (>600 nm) properties make these molecular viscometers suitable for live-cell fluorescence imaging in Caenorhabditis elegans. Among these probes, JIND-Mor is specifically designed to target lysosomes via simple modification. The real-time monitoring of lysosomal viscosity change under cellular stress was achieved. We believe that such a class of molecule viscometers has the potential to monitor lysosomal health in pathogenic conditions.
RESUMO
Metal ion plays a critical role from enzyme catalysis to cellular health and functions. The concentration of metal ions in a living system is highly regulated. Among the biologically relevant metal ions, the role and toxicity of aluminium in specific biological functions have been getting significant attention in recent years. The interaction of aluminium and the living system is unavoidable due to its high earth crust abundance, and the long-term exposure to aluminium can be fatal for life. The adverse Al3+ toxicity effects in humans result in various diseases ranging from cancers to neurogenetic disorders. Several Al3+ ions sensors have been developed over the past decades using the optical responses of synthesized molecules. However, only limited numbers of water-soluble optical sensors have been reported so far. In this review, we have confined our discussion to water-soluble Al3+ ions detection using optical methods and their utility for live-cell imaging and real-life application.
RESUMO
Long-term visualization of lysosomal properties is extremely crucial to evaluate diseases related to their dysfunction. However, many of the reported lysotrackers are less conducive to imaging lysosomes precisely because they suffer from fluorescence quenching and other inherent drawbacks such as pH-sensitivity, polarity insensitivity, water insolubility, slow diffusibility, and poor photostability. To overcome these limitations, we have utilized an alkyl chain length engineering strategy and synthesized a series of lysosome targeting fluorescent derivatives namely NIMCs by attaching a morpholine moiety at the peri position of the 1,8-naphthalimide (NI) ring through varying alkyl spacers between morpholine and 1,8-naphthalimide. The structural and optical properties of the synthesized NIMCs were explored by 1H-NMR, single-crystal X-ray diffraction, UV-Vis, and fluorescence spectroscopy. Afterward, optical spectroscopic measurements were carefully performed to identify a pH-tolerant, polarity sensitive, and highly photostable fluoroprobes for further live-cell imaging applications. NIMC6 displayed excellent pH-tolerant and polarity-sensitive properties. Consequently, all NIMCs were employed in kidney fibroblast cells (BHK-21) to investigate their applicability for lysosome targeting and probing lysosomal micropolarity. Interestingly, a switching of localization from lysosomes to the endoplasmic reticulum (ER) was also achieved by controlling the linker length and this phenomenon was subsequently applied in determining ER micropolarity. Additionally, the selected probe NIMC6 was also employed in BHK-21 cells for 3-D spheroid imaging and in Caenorhabditis elegans (C. elegans) for in vivo imaging, to evaluate its efficacy for imaging animal models.