RESUMO
Despite several studies on genetic markers and differentially expressed genes related to ribeye area (REA) and tenderness traits in beef cattle, there is divergence in the results regarding the genes associated with these traits. Thirteen genes associated with or exhibiting biological functions that might influence such phenotypes were included in this study. A total of five genes for REA (IGF-1, IGF-2, MSTN, NEDD4, and UBE4A) and eight genes for meat tenderness (CAPN1, CAPN2, CAST, HSPB1, DNAJA1, FABP4, SCD, and PRKAG3) were selected from previous studies on beef cattle. Genes and their respective proteins expression were validated in a commercial population of Nellore cattle using quantitative real-time PCR (RT-qPCR) and advanced mass spectrometry (LC/MS-MS) techniques, respectively. The MSTN gene was upregulated in animals with low REA. The CAPN1, CAPN2, CAST, HSPB1, and DNAJA1 genes were upregulated in animals with tough meat. The proteins translated by these genes were not differentially expressed. Our results confirm the potential of some of the studied genes as biomarkers for carcass and meat quality traits in Nellore cattle.
Assuntos
Carne , Carne Vermelha , Animais , Bovinos/genética , Marcadores Genéticos , Carne/análise , Fenótipo , ProteômicaRESUMO
Transcript data obtained by RNA-Seq were used to identify differentially expressed alternatively spliced genes in ribeye muscle tissue between Nelore cattle that differed in their ribeye area (REA) or intramuscular fat content (IF). A total of 166 alternatively spliced transcripts from 125 genes were significantly differentially expressed in ribeye muscle between the highest and lowest REA groups (p ≤ 0.05). For animals selected on their IF content, 269 alternatively spliced transcripts from 219 genes were differentially expressed in ribeye muscle between the highest and lowest IF animals. Cassette exons and alternative 3' splice sites were the most frequently found alternatively spliced transcripts for REA and IF content. For both traits, some differentially expressed alternatively spliced transcripts belonged to myosin and myotilin gene families. The hub transcripts were identified for REA (LRRFIP1, RCAN1 and RHOBTB1) and IF (TRIP12, HSPE1 and MAP2K6) have an important role to play in muscle cell degradation, development and motility. In general, transcripts were found for both traits with biological process GO terms that were involved in pathways related to protein ubiquitination, muscle differentiation, lipids and hormonal systems. Our results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the whole cell muscle mRNA of Nelore cattle.