Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Pathog ; 16(8): e1008699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32764827

RESUMO

São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.


Assuntos
Genoma Viral , Doenças dos Primatas/virologia , Febre Amarela/veterinária , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Zoonoses/virologia , Animais , Brasil/epidemiologia , Surtos de Doenças , Genômica , Humanos , Filogenia , Filogeografia , Doenças dos Primatas/epidemiologia , Doenças dos Primatas/transmissão , Primatas/virologia , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/transmissão
2.
PLoS Pathog ; 13(7): e1006537, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28746373

RESUMO

Zika virus (ZIKV) is a mosquito-transmitted virus that can cause severe defects in an infected fetus. ZIKV is also transmitted by sexual contact, although the relative importance of sexual transmission is unclear. To better understand the role of sexual transmission in ZIKV pathogenesis, a nonhuman primate (NHP) model of vaginal transmission was developed. ZIKV was readily transmitted to mature cycling female rhesus macaque (RM) by vaginal inoculation with 104-106 plaque-forming units (PFU). However, there was variability in susceptibility between the individual RM with 1->8 vaginal inoculations required to establish infection. After treatment with Depoprovera, a widely used contraceptive progestin, two RM that initially resisted 8 vaginal ZIKV inoculations became infected after one ZIKV inoculation. Thus, Depoprovera seemed to enhance susceptibility to vaginal ZIKV transmission. Unexpectedly, the kinetics of virus replication and dissemination after intravaginal ZIKV inoculation were markedly different from RM infected with ZIKV by subcutaneous (SQ) virus inoculation. Several groups have reported that after SQ ZIKV inoculation vRNA is rapidly detected in blood plasma with vRNA less common in urine and saliva and only rarely detected in female reproductive tract (FRT) secretions. In contrast, in vaginally inoculated RM, plasma vRNA is delayed for several days and ZIKV replication in, and vRNA shedding from, the FRT was found in all 6 animals. Further, after intravaginal transmission ZIKV RNA shedding from FRT secretions was detected before or simultaneously with plasma vRNA, and persisted for at least as long. Thus, ZIKV replication in the FRT was independent of, and often preceded virus replication in the tissues contributing to plasma vRNA. These results support the conclusion that ZIKV preferentially replicates in the FRT after vaginal transmission, but not after SQ transmission, and raise the possibility that there is enhanced fetal infection and pathology after vaginal ZIKV transmission compared to a mosquito transmitted ZIKV.


Assuntos
Vagina/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Genitália Feminina/virologia , Macaca mulatta , Replicação Viral , Eliminação de Partículas Virais , Zika virus/genética
3.
Ann Neurol ; 81(1): 152-156, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27977881

RESUMO

Recent advances in the understanding of neuropathogenesis associated with Zika virus (ZIKV) infection has led to descriptions of neonatal microcephaly cases. However, none of these reports have evaluated the humoral response during ZIKV infection. We report here polyfunctional immune activation associated with increased interferon-gamma-inducible protein 10, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), monocyte chemoattractive protein 1 (MCP-1), and granulocyte colony-stimulating factor (G-CSF) levels in the amniotic fluid of ZIKV-positive pregnant women with neonatal microcephaly. These cytokines have been associated not only with neuronal damage, but also with differentiation and proliferation of neural progenitor cells. Our results suggested that the immune activation caused by ZIKV infection in the uterine environment could also interfere with fetal development. ANN NEUROL 2017;81:152-156.


Assuntos
Líquido Amniótico/imunologia , Microcefalia/etiologia , Microcefalia/imunologia , Infecção por Zika virus/complicações , Infecção por Zika virus/imunologia , Adolescente , Adulto , Líquido Amniótico/metabolismo , Estudos de Casos e Controles , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Microcefalia/metabolismo , Microcefalia/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/metabolismo , Gravidez , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
4.
Diagnostics (Basel) ; 10(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192080

RESUMO

This work aimed to identify and compare the bacterial patterns present in endometriotic lesions, eutopic endometrium and vaginal fluid from endometriosis patients with those found in the vaginal fluid and eutopic endometrium of control patients. Vaginal fluid, eutopic endometrium and endometriotic lesions were collected. DNA was extracted and the samples were analyzed to identify microbiome by high-throughput DNA sequencing of the 16S rRNA marker gene. Amplicon sequencing from vaginal fluid, eutopic endometrium and endometriotic lesion resulted in similar profiles of microorganisms, composed most abundantly by the genus Lactobacillus, Gardnerella, Streptococcus and Prevotella. No significant differences were found in the diversity analysis of microbiome profiles between control and endometriotic patients; however deep endometriotic lesions seems to present different bacterial composition, less predominant of Lactobacillus and with more abundant Alishewanella, Enterococcus and Pseudomonas.

5.
Cell Rep ; 30(7): 2275-2283.e7, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075736

RESUMO

Zika virus (ZIKV) has caused an explosive epidemic linked to severe clinical outcomes in the Americas. As of June 2018, 4,929 ZIKV suspected infections and 46 congenital syndrome cases had been reported in Manaus, Amazonas, Brazil. Although Manaus is a key demographic hub in the Amazon region, little is known about the ZIKV epidemic there, in terms of both transmission and viral genetic diversity. Using portable virus genome sequencing, we generated 59 ZIKV genomes in Manaus. Phylogenetic analyses indicated multiple introductions of ZIKV from northeastern Brazil to Manaus. Spatial genomic analysis of virus movement among six areas in Manaus suggested that populous northern neighborhoods acted as sources of virus transmission to other neighborhoods. Our study revealed how the ZIKV epidemic was ignited and maintained within the largest urban metropolis in the Amazon. These results might contribute to improving the public health response to outbreaks in Brazil.


Assuntos
Infecção por Zika virus/virologia , Zika virus/genética , Brasil/epidemiologia , Monitoramento Epidemiológico , Feminino , Genômica/métodos , Humanos , Masculino , Infecção por Zika virus/epidemiologia
6.
PLoS Negl Trop Dis ; 13(3): e0007065, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845267

RESUMO

BACKGROUND: Since its first detection in the Caribbean in late 2013, chikungunya virus (CHIKV) has affected 51 countries in the Americas. The CHIKV epidemic in the Americas was caused by the CHIKV-Asian genotype. In August 2014, local transmission of the CHIKV-Asian genotype was detected in the Brazilian Amazon region. However, a distinct lineage, the CHIKV-East-Central-South-America (ECSA)-genotype, was detected nearly simultaneously in Feira de Santana, Bahia state, northeast Brazil. The genomic diversity and the dynamics of CHIKV in the Brazilian Amazon region remains poorly understood despite its importance to better understand the epidemiological spread and public health impact of CHIKV in the country. METHODOLOGY/PRINCIPAL FINDINGS: We report a large CHIKV outbreak (5,928 notified cases between August 2014 and August 2018) in Boa vista municipality, capital city of Roraima's state, located in the Brazilian Amazon region. We generated 20 novel CHIKV-ECSA genomes from the Brazilian Amazon region using MinION portable genome sequencing. Phylogenetic analyses revealed that despite an early introduction of the Asian genotype in 2015 in Roraima, the large CHIKV outbreak in 2017 in Boa Vista was caused by an ECSA-lineage most likely introduced from northeastern Brazil. Epidemiological analyses suggest a basic reproductive number of R0 of 1.66, which translates in an estimated 39 (95% CI: 36 to 45) % of Roraima's population infected with CHIKV-ECSA. Finally, we find a strong association between Google search activity and the local laboratory-confirmed CHIKV cases in Roraima. CONCLUSIONS/SIGNIFICANCE: This study highlights the potential of combining traditional surveillance with portable genome sequencing technologies and digital epidemiology to inform public health surveillance in the Amazon region. Our data reveal a large CHIKV-ECSA outbreak in Boa Vista, limited potential for future CHIKV outbreaks, and indicate a replacement of the Asian genotype by the ECSA genotype in the Amazon region.


Assuntos
Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Surtos de Doenças/prevenção & controle , Genoma Viral/genética , Zoonoses/epidemiologia , Animais , Brasil/epidemiologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Monitoramento Epidemiológico , Humanos , Filogenia , Sequenciamento Completo do Genoma , Zoonoses/transmissão , Zoonoses/virologia
7.
Ann Biomed Eng ; 46(12): 1963-1974, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30003503

RESUMO

Recent global epidemics of viral infection such as Zika virus (ZIKV) and associated birth defects from maternal-fetal viral transmission highlights the critical unmet need for experimental models that adequately recapitulates the biology of the human maternal-fetal interface and downstream fetal development. Herein, we report an in vitro biomimetic placenta-fetus model of the maternal-fetal interface and downstream fetal cells. Using a tissue engineering approach, we built a 3D model incorporating placental trophoblast and endothelial cells into an extracellular matrix environment and validated formation of the maternal-fetal interface. We utilized this model to study ZIKV exposure to the placenta and neural progenitor cells. Our results indicated ZIKV infects both trophoblast and endothelial cells, leading to a higher viral load exposed to fetal cells downstream of the barrier. Viral inhibition by chloroquine reduced the amount of virus both in the placenta and transmitted to fetal cells. A sustained downstream neural cell viability in contrast to significantly reduced viability in an acellular model indicates that the placenta sequesters ZIKV consistent with clinical observations. These findings suggest that the placenta can modulate ZIKV exposure-induced fetal damage. Moreover, such tissue models can enable rigorous assessment of potential therapeutics for maternal-fetal medicine.


Assuntos
Feto , Transmissão Vertical de Doenças Infecciosas , Modelos Biológicos , Placenta , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus/metabolismo , Feminino , Feto/embriologia , Feto/patologia , Feto/virologia , Humanos , Placenta/metabolismo , Placenta/patologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/patologia , Infecção por Zika virus/embriologia , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão
8.
Front Microbiol ; 8: 2557, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312238

RESUMO

Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.

9.
Open Forum Infect Dis ; 3(4): ofw203, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28053996

RESUMO

Brazil has experienced a Zika virus (ZIKV) outbreak with increased incidence of congenital malformations and neurological manifestations. We describe a case of a 26-year-old Brazilian Caucasian man infected with ZIKV and diagnosed with encephalomyelitis. Brain and spinal cord images showed hyperintense lesions on T2 and fluid-attenuated inversion recovery (FLAIR), and levels of proinflammatory cytokines in the cerebrospinal fluid showed a remarkable increase of interleukin (IL)-6 and IL-8. The observed pattern suggests immune activation during the acute phase, along with the neurological impairment, with normalization in the recovery phase. This is the first longitudinal report of ZIKV infection causing encephalomyelitis with documented immune activation.

10.
JAMA Neurol ; 73(12): 1407-1416, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27695855

RESUMO

IMPORTANCE: Recent studies have reported an increase in the number of fetuses and neonates with microcephaly whose mothers were infected with the Zika virus (ZIKV) during pregnancy. To our knowledge, most reports to date have focused on select aspects of the maternal or fetal infection and fetal effects. OBJECTIVE: To describe the prenatal evolution and perinatal outcomes of 11 neonates who had developmental abnormalities and neurological damage associated with ZIKV infection in Brazil. DESIGN, SETTING, AND PARTICIPANTS: We observed 11 infants with congenital ZIKV infection from gestation to 6 months in the state of Paraíba, Brazil. Ten of 11 women included in this study presented with symptoms of ZIKV infection during the first half of pregnancy, and all 11 had laboratory evidence of the infection in several tissues by serology or polymerase chain reaction. Brain damage was confirmed through intrauterine ultrasonography and was complemented by magnetic resonance imaging. Histopathological analysis was performed on the placenta and brain tissue from infants who died. The ZIKV genome was investigated in several tissues and sequenced for further phylogenetic analysis. MAIN OUTCOMES AND MEASURES: Description of the major lesions caused by ZIKV congenital infection. RESULTS: Of the 11 infants, 7 (63.6%) were female, and the median (SD) maternal age at delivery was 25 (6) years. Three of 11 neonates died, giving a perinatal mortality rate of 27.3%. The median (SD) cephalic perimeter at birth was 31 (3) cm, a value lower than the limit to consider a microcephaly case. In all patients, neurological impairments were identified, including microcephaly, a reduction in cerebral volume, ventriculomegaly, cerebellar hypoplasia, lissencephaly with hydrocephalus, and fetal akinesia deformation sequence (ie, arthrogryposis). Results of limited testing for other causes of microcephaly, such as genetic disorders and viral and bacterial infections, were negative, and the ZIKV genome was found in both maternal and neonatal tissues (eg, amniotic fluid, cord blood, placenta, and brain). Phylogenetic analyses showed an intrahost virus variation with some polymorphisms in envelope genes associated with different tissues. CONCLUSIONS AND RELEVANCE: Combined findings from clinical, laboratory, imaging, and pathological examinations provided a more complete picture of the severe damage and developmental abnormalities caused by ZIKV infection than has been previously reported. The term congenital Zika syndrome is preferable to refer to these cases, as microcephaly is just one of the clinical signs of this congenital malformation disorder.


Assuntos
Artrogripose/etiologia , Hidrocefalia/etiologia , Malformações do Sistema Nervoso/etiologia , Complicações Infecciosas na Gravidez , Infecção por Zika virus/complicações , Zika virus , Anormalidades Múltiplas/etiologia , Brasil , Cerebelo/patologia , Cérebro/patologia , Feminino , Seguimentos , Humanos , Lactente , Morte do Lactente , Recém-Nascido , Lisencefalia/etiologia , Masculino , Microcefalia/etiologia , Morte Perinatal , Gravidez , Zika virus/genética , Zika virus/isolamento & purificação , Zika virus/patogenicidade , Infecção por Zika virus/congênito
11.
PLoS One ; 9(11): e113691, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423108

RESUMO

Nef is an HIV-1 accessory protein that promotes viral replication and pathogenesis. A key function of Nef is to ensure sustained depletion of CD4 and MHC-I molecules in infected cells by inducing targeting of these proteins to multivesicular bodies (MVBs), and ultimately to lysosomes for degradation. Nef also affects cellular secretory routes promoting its own secretion via exosomes. To better understand the effects of Nef on the exocytic pathway, we investigated whether this viral factor modifies the composition of exosomes released by T lymphocytes. We showed that both CD4 and MHC-I molecules are secreted in exosomes from T cells and that the expression of Nef reduces the amount of these proteins in exosomes. To investigate the functional role for this novel activity of Nef, we performed in vitro HIV-1 infection assays in the presence of distinct populations of exosomes. We demonstrated that exosomes released by CD4+ T cells, but not CD4- T cells, efficiently inhibit HIV-1 infection in vitro. Because CD4 is the main receptor for HIV-1 infection, these results suggest that CD4 molecules displayed on the surface of exosomes can bind to envelope proteins of HIV-1 hindering virus interaction with target cells and infection. Importantly, CD4-depleted exosomes released by CD4+ T cells expressing Nef have a reduced capacity to inhibit HIV-1 infection in vitro. These results provide evidence that Nef promotes HIV-1 infection by reducing the expression of CD4 in exosomes from infected cells, besides the original role of Nef in reducing the CD4 levels at the cell surface.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Exossomos/imunologia , Produtos do Gene nef/imunologia , Infecções por HIV/imunologia , Linhagem Celular , Regulação para Baixo , Células HEK293 , HIV-1 , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA