Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(5): 1099-1104, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339481

RESUMO

Multiple studies have investigated the mechanisms of aggressive behavior in Drosophila; however, little is known about the effects of chronic fighting experience. Here, we investigated if repeated fighting encounters would induce an internal state that could affect the expression of subsequent behavior. We trained wild-type males to become winners or losers by repeatedly pairing them with hypoaggressive or hyperaggressive opponents, respectively. As described previously, we observed that chronic losers tend to lose subsequent fights, while chronic winners tend to win them. Olfactory conditioning experiments showed that winning is perceived as rewarding, while losing is perceived as aversive. Moreover, the effect of chronic fighting experience generalized to other behaviors, such as gap-crossing and courtship. We propose that in response to repeatedly winning or losing aggressive encounters, male flies form an internal state that displays persistence and generalization; fight outcomes can also have positive or negative valence. Furthermore, we show that the activities of the PPL1-γ1pedc dopaminergic neuron and the MBON-γ1pedc>α/ß mushroom body output neuron are required for aversion to an olfactory cue associated with losing fights.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Análise por Conglomerados , Comportamento Competitivo , Cruzamentos Genéticos , Feminino , Masculino , Memória , Movimento , Neurônios/metabolismo , Odorantes , Bulbo Olfatório , Assunção de Riscos , Fatores de Tempo
2.
J Exp Biol ; 223(Pt 24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33268534

RESUMO

Social interactions pivot on an animal's experiences, internal states and feedback from others. This complexity drives the need for precise descriptions of behavior to dissect the fine detail of its genetic and neural circuit bases. In laboratory assays, male Drosophila melanogaster reliably exhibit aggression, and its extent is generally measured by scoring lunges, a feature of aggression in which one male quickly thrusts onto his opponent. Here, we introduce an explicit approach to identify both the onset and reversals in hierarchical status between opponents and observe that distinct aggressive acts reproducibly precede, concur or follow the establishment of dominance. We find that lunges are insufficient for establishing dominance. Rather, lunges appear to reflect the dominant state of a male and help in maintaining his social status. Lastly, we characterize the recurring and escalating structure of aggression that emerges through subsequent reversals in dominance. Collectively, this work provides a framework for studying the complexity of agonistic interactions in male flies, enabling its neurogenetic basis to be understood with precision.


Assuntos
Agressão , Drosophila melanogaster , Animais , Comportamento Animal , Drosophila melanogaster/genética , Hierarquia Social , Masculino , Predomínio Social
3.
Behav Genet ; 41(5): 754-67, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21617953

RESUMO

Cues from both an animal's internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene.


Assuntos
Drosophila melanogaster/fisiologia , Comportamento Sexual Animal , Alelos , Animais , Comportamento Animal , Tamanho Corporal , Cruzamentos Genéticos , Meio Ambiente , Comportamento Alimentar , Feminino , Masculino , Modelos Genéticos , Movimento , Fatores Sexuais , Especificidade da Espécie
4.
PLoS One ; 5(1): e8793, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20111707

RESUMO

Methods available for quickly and objectively quantifying the behavioral phenotypes of the fruit fly, Drosophila melanogaster, lag behind in sophistication the tools developed for manipulating their genotypes. We have developed a simple, easy-to-replicate, general-purpose experimental chamber for studying the ground-based behaviors of fruit flies. The major innovative feature of our design is that it restricts flies to a shallow volume of space, forcing all behavioral interactions to take place within a monolayer of individuals. The design lessens the frequency that flies occlude or obscure each other, limits the variability in their appearance, and promotes a greater number of flies to move throughout the center of the chamber, thereby increasing the frequency of their interactions. The new chamber design improves the quality of data collected by digital video and was conceived and designed to complement automated machine vision methodologies for studying behavior. Novel and improved methodologies for better quantifying the complex behavioral phenotypes of Drosophila will facilitate studies related to human disease and fundamental questions of behavioral neuroscience.


Assuntos
Comportamento Animal , Drosophila melanogaster/fisiologia , Animais
5.
Proc Natl Acad Sci U S A ; 99(3): 1598-603, 2002 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11818544

RESUMO

When males of the roundworm Caenorhabditis elegans come into association with their hermaphroditic counterparts they cease foraging behavior and begin to mate. Here we detail several assays used to demonstrate that a diffusible cue is correlated with this process. This cue is sexually dimorphic, given off only by the hermaphrodite and eliciting a response only in the male. Males are attracted to, reverse direction of movement frequently, and remain in regions of agar conditioned with hermaphrodites. From our studies we suggest a form of kinesis that works by attracting males to their mating partners from a distance and functions, once males arrive, in holding attracted males in close proximity. The hermaphrodite vulva is not required for the cue. Males from general sensory mutants osm-5 and osm-6 fail to respond to the cue, whereas male-specific mutants lov-1 and pkd-2 respond. Finally, that males from multiple isolates of C. elegans also respond similarly to this cue indicates that this cue is robust and has been maintained during recent evolution.


Assuntos
Caenorhabditis elegans/fisiologia , Sinais (Psicologia) , Transtornos do Desenvolvimento Sexual , Comportamento Sexual Animal , Animais , Feminino , Masculino , Movimento , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA