Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 5): 1058-1066, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39150680

RESUMO

Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick-Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions.

2.
Phys Rev Lett ; 131(4): 045001, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566861

RESUMO

We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.

3.
Phys Rev Lett ; 128(15): 157205, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499884

RESUMO

Triggering and switching magnetic moments is of key importance for applications ranging from spintronics to quantum information. A noninvasive ultrafast control at the nanoscale is, however, an open challenge. Here, we propose a novel laser-based scheme for generating atomic-scale charge current loops within femtoseconds. The associated orbital magnetic moments remain ferromagnetically aligned after the laser pulses have ceased and are localized within an area that is tunable via laser parameters and can be chosen to be well below the diffraction limit of the driving laser field. The scheme relies on tuning the phase, polarization, and intensities of two copropagating Gaussian and vortex laser pulses, allowing us to control the spatial extent, direction, and strength of the atomic-scale charge current loops induced in the irradiated sample upon photon absorption. In the experiment we used He atoms driven by an ultraviolet and infrared vortex-beam laser pulses to generate current-carrying Rydberg states and test for the generated magnetic moments via dichroic effects in photoemission. Ab initio quantum dynamic simulations and analysis confirm the proposed scenario and provide a quantitative estimate of the generated local moments.

4.
Opt Express ; 29(22): 36086-36099, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809028

RESUMO

Performing experiments at free-electron lasers (FELs) requires an exhaustive knowledge of the pulse temporal and spectral profile, as well as the focal spot shape and size. Operating FELs in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral regions calls for designing ad-hoc optical layouts to transport and characterize the EUV/SXR beam, as well as tailoring its spatial dimensions at the focal plane down to sizes in the few micrometers range. At the FERMI FEL (Trieste, Italy) this task is carried out by the Photon Analysis Delivery and Reduction System (PADReS). In particular, to meet the different experimental requests on the focal spot shape and size, a proper tuning of the optical systems is required, and this should be monitored by means of dedicated techniques. Here, we present and compare two reconstruction methods for spot characterization: single-shot imprints captured via ablation on a poly(methyl methacrylate) sample (PMMA) and pulse profiles retrieved by means of a Hartmann wavefront sensor (WFS). By recording complementary datasets at and nearby the focal plane, we exploit the tomography of the pulse profile along the beam propagation axis, as well as a qualitative and quantitative comparison between these two reconstruction methods.

5.
Phys Rev Lett ; 127(9): 096801, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506179

RESUMO

Charge transport processes at interfaces play a crucial role in many processes. Here, the first soft x-ray second harmonic generation (SXR SHG) interfacial spectrum of a buried interface (boron-Parylene N) is reported. SXR SHG shows distinct spectral features that are not observed in x-ray absorption spectra, demonstrating its extraordinary interfacial sensitivity. Comparison to electronic structure calculations indicates a boron-organic separation distance of 1.9 Å, with changes of less than 1 Å resulting in easily detectable SXR SHG spectral shifts (ca. hundreds of milli-electron volts).

6.
J Synchrotron Radiat ; 25(Pt 1): 44-51, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271750

RESUMO

Time-resolved investigations have begun a new era of chemistry and physics, enabling the monitoring in real time of the dynamics of chemical reactions and matter. Induced transient optical absorption is a basic ultrafast electronic effect, originated by a partial depletion of the valence band, that can be triggered by exposing insulators and semiconductors to sub-picosecond extreme-ultraviolet pulses. Besides its scientific and fundamental implications, this process is very important as it is routinely applied in free-electron laser (FEL) facilities to achieve the temporal superposition between FEL and optical laser pulses with tens of femtoseconds accuracy. Here, a set of methodologies developed at the FERMI facility based on ultrafast effects in condensed materials and employed to effectively determine the FEL/laser cross correlation are presented.

7.
Opt Lett ; 41(21): 5090-5093, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805693

RESUMO

Free-electron lasers (FELs) currently represent a step forward on time-resolved investigations on any phase of matter through pump-probe methods involving FELs and laser beams. That class of experiments requires an accurate spatial and temporal superposition of pump and probe beams on the sample, which at present is still a critical procedure. More efficient approaches are demanded to quickly achieve the superposition and synchronization of the beams. Here, we present what we believe is a novel technique based on an integrated device allowing the simultaneous characterization and the fast spatial and temporal overlapping of the beams, reducing the alignment procedure from hours to minutes.

8.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307994

RESUMO

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

9.
Rev Sci Instrum ; 93(11): 115109, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461546

RESUMO

The scope of this paper is to outline the main marks and performances of the MagneDyn beamline, which was designed and built to perform ultrafast magnetodynamic studies in solids. Open to users since 2019, MagneDyn operates with variable circular and linear polarized femtosecond pulses delivered by the externally laser-seeded FERMI free-electron laser (FEL). The very high degree of polarization, the high pulse-to-pulse stability, and the photon energy tunability in the 50-300 eV range allow performing advanced time-resolved magnetic dichroic experiments at the K-edge of light elements, e.g., carbon and at the M- and N-edge of the 3d-transition-metals and rare earth elements, respectively. To this end, two experimental end-stations are available. The first is equipped with an in situ dedicated electromagnet, a cryostat, and an extreme ultraviolet Wollaston-like polarimeter. The second, designed for carry-in user instruments, hosts also a spectrometer for pump-probe resonant x-ray emission and inelastic spectroscopy experiments with a sub-eV energy resolution. A Kirkpatrick-Baez active optics system provides a minimum focus of ∼20×20µm2 FWHM at the sample. A pump laser setup, synchronized with the FEL-laser seeding system, delivers sub-picosecond pulses with photon energies ranging from the mid-IR to near-UV for optical pump-FEL probe experiments with a minimal pump-probe jitter of few femtoseconds. The overall combination of these features renders MagneDyn a unique state-of-the-art tool for studying ultrafast magnetic and resonant emission phenomena in solids.

10.
J Phys Chem Lett ; 13(36): 8470-8476, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36054027

RESUMO

Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and high spectral resolution.

11.
Light Sci Appl ; 10(1): 92, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911069

RESUMO

Self-action nonlinearity is a key aspect - either as a foundational element or a detrimental factor - of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters, and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.

12.
Struct Dyn ; 8(3): 034304, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34169118

RESUMO

Here, we report on the conceptual design, the hardware realization, and the first experimental results of a novel and compact x-ray polarimeter capable of a single-pulse linear polarization angle detection in the extreme ultraviolet photon energy range. The polarimeter is tested by performing time resolved pump-probe experiments on a Ni80Fe20 Permalloy film at the M2,3 Ni edge at an externally seeded free-electron laser source. Comparison with similar experiments reported in the literature shows the advantages of our approach also in view of future experiments.

13.
Struct Dyn ; 4(5): 054306, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28852688

RESUMO

Stimulated emission is a fundamental process in nature that deserves to be investigated and understood in the extreme ultra-violet (EUV) and x-ray regimes. Today, this is definitely possible through high energy density free electron laser (FEL) beams. In this context, we give evidence for soft-x-ray stimulated emission from a magnesium oxide solid target pumped by EUV FEL pulses formed in the regime of travelling-wave amplified spontaneous emission in backward geometry. Our results combine two effects separately reported in previous works: emission in a privileged direction and existence of a material-dependent threshold for the stimulated emission. We develop a novel theoretical framework, based on coupled rate and transport equations taking into account the solid-density plasma state of the target. Our model accounts for both observed mechanisms that are the privileged direction for the stimulated emission of the Mg L2,3 characteristic emission and the pumping threshold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA