RESUMO
PURPOSE: Adult Diffuse midline glioma (DMG) is a very rare disease. DMGs are currently treated with radiotherapy and chemotherapy even if only a few retrospective studies assessed the impact on overall survival (OS) of these approaches. METHODS: We carried out an Italian multicentric retrospective study of adult patients with H3K27-altered DMG to assess the effective role of systemic therapy in the treatment landscape of this rare tumor type. RESULTS: We evaluated 49 patients from 6 Institutions. The median age was 37.3 years (range 20.1-68.3). Most patients received biopsy as primary approach (n = 30, 61.2%) and radiation therapy after surgery (n = 39, 79.6%). 25 (51.0%) of patients received concurrent chemotherapy and 26 (53.1%) patients received adjuvant temozolomide. In univariate analysis, concurrent chemotherapy did not result in OS improvement while adjuvant temozolomide was associated with longer OS (21.2 vs. 9.0 months, HR 0.14, 0.05-0.41, p < 0.001). Multivariate analysis confirmed the role of adjuvant chemotherapy (HR 0.1, 95%CI: 0.03-0.34, p = 0.003). In patients who progressed after radiation and/or chemotherapy the administration of a second-line systemic treatment had a significantly favorable impact on survival (8.0 vs. 3.2 months, HR 0.2, 95%CI 0.1-0.65, p = 0.004). CONCLUSION: In our series, adjuvant treatment after radiotherapy can be useful in improving OS of patients with H3K27-altered DMG. When feasible another systemic treatment after treatment progression could be proposed.
Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Temozolomida/uso terapêutico , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico , Glioma/tratamento farmacológico , Glioma/patologia , Dacarbazina/uso terapêutico , Quimioterapia AdjuvanteRESUMO
Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
Doxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B-/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B-/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. ⢠Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. ⢠ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. ⢠The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. ⢠The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Doxorrubicina/farmacologia , Dano ao DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismoRESUMO
BACKGROUND: In 2017, the European Association for Neuro-Oncology (EANO) published the guideline for palliative care (PC) in adults with glioma. The Italian Society of Neurology (SIN), the Italian Association for Neuro-Oncology (AINO), and the Italian Society for Palliative Care (SICP) joined forces to update and adapt this guideline to the Italian context and aimed to involve patients and carers in the formulation of the clinical questions. METHODS: During semi-structured interviews with glioma patients and focus group meetings (FGMs) with family carers of deceased patients, participants rated the importance of a set of pre-specified intervention topics, shared their experience, and suggested additional topics. Interviews and FGMs were audio-recorded, transcribed, coded, and analyzed (framework and content analysis). RESULTS: We held 20 interviews and five FGMs (28 carers). Both parties considered the pre-specified topics as important, chiefly information/communication, psychological support, symptoms management, and rehabilitation. Patients aired the impact of focal neurological and cognitive deficits. Carers reported difficulties in dealing with patient's behavior and personality changes and appreciated the preservation of patient's functioning via rehabilitation. Both affirmed the importance of a dedicated healthcare path and patient's involvement in the decision-making process. Carers expressed the need to be educated and supported in their caregiving role. CONCLUSIONS: Interviews and FGMs were well informative and emotionally challenging. Both parties confirmed the importance of the pre-specified topics, and carers suggested one additional topic: education/support to caregivers. Our findings strengthen the importance of a comprehensive care approach and of addressing the needs of both patients and their family carers.
Assuntos
Glioma , Cuidados Paliativos , Humanos , Adulto , Cuidadores/psicologia , Grupos Focais , Atenção à Saúde , Glioma/terapiaRESUMO
Chronic myelomonocytic leukemia (CMML) is a hematological neoplasm characterized by monocytosis, splenomegaly, thrombocytopenia, and anemia. Moreover, it is associated with SRSF2 mutations and, rarely, with CSF3R variants. We present the case of an 84-year-old patient with persistent anemia and monocytosis. Due to the presence of dysmorphic granulocytes, monocyte atypia, and myeloid precursors in the peripheral blood cells, the patient was subjected to a bone marrow examination. The diagnosis was consistent with CMML type 2. The Hemocoagulative test showed an increase in fibrinolysis markers. Next-generation targeted sequencing showed TET2 and SRSF2 mutations, along with an unexpected CSF3R germline missense variant, rarely encountered in CMML. The patient started Azacitidine treatment and achieved normal hemostatic process values. In conclusion, we identified a heterozygous germline mutation that, together with TET2 and SRSF2 variants, was responsible for the hemorrhagic manifestation.
Assuntos
Anemia , Leucemia Mielomonocítica Crônica , Humanos , Idoso de 80 Anos ou mais , Leucemia Mielomonocítica Crônica/complicações , Leucemia Mielomonocítica Crônica/genética , Mutação em Linhagem Germinativa , Predisposição Genética para Doença , Mutação , Células Germinativas , Receptores de Fator Estimulador de Colônias/genéticaRESUMO
ETV6::ABL1 rearranged neoplasms are rare hematological diseases. To date, about 80 cases have been reported, including myeloid and lymphoid leukemias. The ETV6 gene codes for an ETS family transcription factor and several fusion partners have been described. When translocated, ETV6 causes the constitutive activation of the partner genes. Here, we report the case of a 54-year-old woman with a cryptic insertion of the 3' region of ABL1 in the ETV6 gene. The patient was first diagnosed with idiopathic hypereosinophilic syndrome, according to the clinical history, conventional cytogenetics, standard molecular analyses and pathologist description. Next generation sequencing of diagnosis samples unexpectedly detected both ETV6::ABL1 type A and B fusion transcripts, which were then confirmed by FISH. The diagnosis was Myeloid/Lymphoid neoplasm with ETV6::ABL1 fusion, and the patient received imatinib mesylate treatment. In a follow-up after more than one year, the patient still maintained the molecular and complete hematological responses. This case highlights the importance of timely and proper diagnostics and prompt tyrosine kinase inhibitor treatment.
Assuntos
Síndrome Hipereosinofílica , Transtornos Mieloproliferativos , Neoplasias , Feminino , Humanos , Pessoa de Meia-Idade , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases , Citogenética , Proteínas Proto-Oncogênicas c-ets/genéticaRESUMO
Uncontrolled proliferative signals and cell cycle dysregulation due to genomic or functional alterations are important drivers of the expansion of undifferentiated blast cells in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cells. Therefore, they are largely studied as potential therapeutic targets in the field. We here present the most recent advancements in the evaluation of novel compounds targeting cell cycle proteins or oncogenic mechanisms, including those showing an antiproliferative effect in acute leukemia, independently of the identification of a specific target. Several new kinase inhibitors have been synthesized that showed effectiveness in a nanomolar to micromolar concentration range as inhibitors of FLT3 and its mutant forms, a highly attractive therapeutic target due to its driver role in a significant fraction of AML cases. Moreover, we introduce novel molecules functioning as microtubule-depolymerizing or P53-restoring agents, G-quadruplex-stabilizing molecules and CDK2, CHK1, PI3Kδ, STAT5, BRD4 and BRPF1 inhibitors. We here discuss their mechanisms of action, including the downstream intracellular changes induced by in vitro treatment, hematopoietic toxicity, in vivo bio-availability and efficacy in murine xenograft models. The promising activity profile demonstrated by some of these candidates deserves further development towards clinical investigation.
Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Animais , Camundongos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Leucemia Mieloide Aguda/metabolismo , Doença Aguda , Ciclo Celular , Divisão Celular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMO
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 cobound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations, IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of "kinetic control" in which signaling-induced dynamics of IRF4 in activated B cells control their cell-fate outcomes.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/metabolismo , Fatores Reguladores de Interferon/metabolismo , Plasmócitos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Citidina Desaminase/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Centro Germinativo/imunologia , Fatores Reguladores de Interferon/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Plasmócitos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6 , Transativadores/metabolismo , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
BACKGROUND AND PURPOSE: Adult brainstem gliomas are rare primary brain tumours with heterogeneous clinical course. The low frequency of these tumours makes it difficult to achieve high-quality evidence regarding prognostic factors, adequate therapeutic approach and outcome in such patients. METHODS: In this retrospective study, we analysed clinical, radiological, molecular, prognostic and therapeutic factors in a series of 47 histologically proven adult brainstem gliomas recruited over a 20-year period (1998-2018). RESULTS: Twenty-two patients were male, 25 female with median age of 39 years. The tumour involved one brainstem segment in 20 cases and 2 or more segments in 27. Contrast enhancement was reported in 28 cases. Surgical procedures included biopsy in 26 cases and partial/total resection in the remaining 21. Histological diagnosis was of low-grade glioma in 23 patients, high-grade glioma in 22 and non-diagnostic in 2 cases. Data regarding molecular biology were available for 22 patients. Median overall survival was 35 months, in particular 16 months in high-grade glioma and 84 months in low-grade glioma. At univariate analysis, tumour grade was the only factor with a statistically significant impact on survival time (p = 0,003), whereas younger age, better performance status and total/subtotal resection showed a trend to more prolonged survival. This study also confirms safety of biopsy/surgery in adult brainstem glioma patients and shows a clear trend to a more frequent assessment of molecular biology data. CONCLUSIONS: Further prospective multicentre efforts, and hopefully clinical trials, are necessary to improve outcome in this neglected glioma patient population.
Assuntos
Neoplasias Encefálicas , Neoplasias do Tronco Encefálico , Glioma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/terapia , Feminino , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Humanos , Itália/epidemiologia , Masculino , Prognóstico , Estudos RetrospectivosRESUMO
INTRODUCTION: Medulloblastoma (MB) is the most common primary malignant intracranial tumor in childhood, but it is very rare in adults, and for this reason, the optimal treatment has not yet been defined. We designed a multicentric study in order to define relevant outcome measures for future prospective studies. MATERIALS AND METHODS: The project involved 10 Italian centers. The database shared among the centers contains epidemiological, diagnostic (radiological and histological/molecular), therapeutic, recurrence information, and survival data. RESULTS: A total of 152 patients (102 males and 50 females, median age 32) were included in the study. Twenty-three of 152 patients had a diagnosis of classic medulloblastoma, 52/152 had desmoplastic/extensive nodularity, 2/152 had large-cell anaplastic medulloblastoma, and the remaining had diagnoses not otherwise specified. Almost all patients underwent craniospinal irradiation after surgery; in 85.5% of patients, adjuvant chemotherapy, mainly platinum- and etoposide-based chemotherapy, was performed immediately after RT. Upon recurrence, most patients were retreated with various chemotherapy regimens, including intrathecal chemotherapy in patients with leptomeningeal dissemination. The overall survival (OS) rate at 5 years was 73.3% (95% CI, 65.0-80.0%). The median OS for the whole group of patients was 112 months. CONCLUSIONS: The data collected were mainly consistent with the literature. A limitation of this study was the large number of patients lost to follow-up and the lack of molecular data for most patients diagnosed until 2010. An important challenge for the future will be MB biologic characterization in adults, with the identification of specific genetic patterns. It will be important to have more national and international collaborations to provide evidence-based management strategies that attempt to obtain a standard of care.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neurologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/epidemiologia , Neoplasias Cerebelares/terapia , Terapia Combinada , Feminino , Humanos , Itália/epidemiologia , Masculino , Meduloblastoma/diagnóstico , Meduloblastoma/epidemiologia , Meduloblastoma/terapia , Recidiva Local de Neoplasia , Estudos Prospectivos , Estudos RetrospectivosRESUMO
We synthesized five novel tryptamine derivatives characterized by the presence of an azelayl chain or of a 1,1,1-trichloroethyl group, in turn connected to another heterocyclic scaffold. The combination of tryptamin-, 1,1,1-trichloroethyl- and 2-aminopyrimidinyl- moieties produced compound 9 identified as the most active compound in hematological cancer cell lines (IC50 = 0.57-65.32 µM). Moreover, keeping constant the presence of the tryptaminic scaffold and binding it to the azelayl moiety, the compounds maintain biological activity. Compound 13 is still active against hematological cancer cell lines and shows a selective effect only on HT29 cells (IC50 = 0.006 µM) among solid tumor models. Compound 14 loses activity on all leukemic lines, while showing a high level of toxicity on all solid tumor lines tested (IC50 0.0015-0.469 µM).
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Fatores Biológicos/química , Fatores Biológicos/farmacologia , Triptaminas/química , Triptaminas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Neoplasias/tratamento farmacológicoRESUMO
Non coding RNAs (ncRNAs) have emerged as regulators of human carcinogenesis by affecting the expression of key tumor suppressor genes and oncogenes. They are divided into short and long ncRNAs, according to their length. Circular RNAs (circRNAs) are included in the second group and were recently discovered as being originated by back-splicing, joining either single or multiple exons, or exons with retained introns. The human Plasmacytoma Variant Translocation 1 (PVT1) gene maps on the long arm of chromosome 8 (8q24) and encodes for 52 ncRNAs variants, including 26 linear and 26 circular isoforms, and 6 microRNAs. PVT1 genomic locus is 54 Kb downstream to MYC and several interactions have been described among these two genes, including a feedback regulatory mechanism. MYC-independent functions of PVT1/circPVT1 have been also reported, especially in the regulation of immune responses. We here review and discuss the role of both PVT1 and circPVT1 in the hematopoietic system. No information is currently available concerning their transforming ability in hematopoietic cells. However, present literature supports their cooperation with a more aggressive and/or undifferentiated cell phenotype, thus contributing to cancer progression. PVT1/circPVT1 upregulation through genomic amplification or rearrangements and/or increased transcription, provides a proliferative advantage to malignant cells in acute myeloid leukemia, acute promyelocytic leukemia, Burkitt lymphoma, multiple myeloma (linear PVT1) and acute lymphoblastic leukemia (circPVT1). In addition, PVT1 and circPVT1 regulate immune responses: the overexpression of the linear form in myeloid derived suppressor cells induced immune tolerance in preclinical tumor models and circPVT1 showed immunosuppressive properties in myeloid and lymphoid cell subsets. Overall, these recent data on PVT1 and circPVT1 functions in hematological malignancies and immune responses reflect two faces of the same coin: involvement in cancer progression by promoting a more aggressive phenotype of malignant cells and negative regulation of the immune system as a novel potential therapy-resistance mechanism.
Assuntos
Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Imunidade/imunologia , RNA Circular/genética , RNA Longo não Codificante/genética , Neoplasias Hematológicas/patologia , HumanosRESUMO
Cytarabine, the 4-amino-1-(ß-D-arabinofuranosyl)-2(1H)-pyrimidinone, (ARA-C) is an antimetabolite cytidine analogue used worldwide as key drug in the management of leukaemia. As specified in the manufacturers' instructions, once the components-sterile water and cytarabine powder-are unpackaged and mixed, the solution begins to degrade after 6 hours at room temperature and 12 hours at 4°C. To evaluate how to avoid wasting the drug in short-term, low-dose treatment regimens, the reconstituted samples, stored at 25°C and 4°C, were analyzed every day of the test week by reversed-phase HPLC and high-field NMR spectroscopy. All the samples remained unchanged for the entire week, which corresponds to the time required to administer the entire commercial drug package during low-dose therapeutic regimens. The drug solution was stored in a glass container at 4°C in an ordinary freezer and drawn with sterile plastic syringes; during this period, no bacterial or fungal contamination was observed. Our findings show that an cytarabine solution prepared and stored in the original vials retains its efficacy and safety and can, therefore, be divided into small doses to be administered over more days, thus avoiding unnecessary expensive and harmful waste of the drug preparation. Moreover, patients who require daily administration of the drug could undergo the infusion at home without need to go to hospital. The stability of the aliquots would help decrease hospitalization costs.
Assuntos
Citarabina/química , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/economia , Cromatografia Líquida de Alta Pressão , Redução de Custos , Citarabina/administração & dosagem , Citarabina/economia , Custos de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Adesão à Medicação , Ressonância Magnética Nuclear Biomolecular/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Soluções/químicaRESUMO
Adult acute lymphoblastic leukemia (ALL) with BCR-ABL1 rearrangement (Philadelphia chromosome, Ph) is a hematological aggressive disease with a fatal outcome in more than 50% of cases. Tyrosine kinase inhibitors (TKIs) targeting the activity of BCR-ABL1 protein have improved the prognosis; however, relapses are frequent because of acquired somatic mutations in the BCR-ABL1 kinase domain causing resistance to first, second and third generation TKIs. Axitinib has shown in vitro and ex vivo activity in blocking ABL1; however, clinical trials exploring its efficacy in ALL are missing. Here, we presented a 77-year-old male with a diagnosis of Ph positive ALL resistant to ponatinib and carrying a rare threonine to leucine (T315L) mutation on BCR-ABL1 gene. The patient was treated with axitinib at 5 mg/twice daily as salvage therapy showing an immediate although transient benefit with an overall survival of 9.3 months. Further dose-finding and randomized clinical trials are required to assess the real efficacy of axitinib for adult Ph positive ALL resistant to third generation TKIs.
Assuntos
Axitinibe/administração & dosagem , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Idoso , Axitinibe/efeitos adversos , Linfócitos B , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Imidazóis/administração & dosagem , Imidazóis/efeitos adversos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Piridazinas/administração & dosagem , Piridazinas/efeitos adversosRESUMO
Aneuploidy is a very rare and tissue-specific event in normal conditions, occurring in a low number of brain and liver cells. Its frequency increases in age-related disorders and is one of the hallmarks of cancer. Aneuploidy has been associated with defects in the spindle assembly checkpoint (SAC). However, the relationship between chromosome number alterations, SAC genes and tumor susceptibility remains unclear. Here, we provide a comprehensive review of SAC gene alterations at genomic and transcriptional level across human cancers and discuss the oncogenic and tumor suppressor functions of aneuploidy. SAC genes are rarely mutated but frequently overexpressed, with a negative prognostic impact on different tumor types. Both increased and decreased SAC gene expression show oncogenic potential in mice. SAC gene upregulation may drive aneuploidization and tumorigenesis through mitotic delay, coupled with additional oncogenic functions outside mitosis. The genomic background and environmental conditions influence the fate of aneuploid cells. Aneuploidy reduces cellular fitness. It induces growth and contact inhibition, mitotic and proteotoxic stress, cell senescence and production of reactive oxygen species. However, aneuploidy confers an evolutionary flexibility by favoring genome and chromosome instability (CIN), cellular adaptation, stem cell-like properties and immune escape. These properties represent the driving force of aneuploid cancers, especially under conditions of stress and pharmacological pressure, and are currently under investigation as potential therapeutic targets. Indeed, promising results have been obtained from synthetic lethal combinations exploiting CIN, mitotic defects, and aneuploidy-tolerating mechanisms as cancer vulnerability.
Assuntos
Aneuploidia , Instabilidade Cromossômica/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Fuso Acromático/genética , Animais , Carcinogênese/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Modelos Genéticos , Neoplasias/patologiaRESUMO
BACKGROUND: Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. METHODS: To understand the molecular bases of aneuploid acute myeloid leukemia (A-AML), this study examined the genomic profile in 42 A-AML cases and 35 euploid acute myeloid leukemia (E-AML) cases. RESULTS: A-AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E-AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A-AML, which was associated with a 3-gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A-AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E-AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. CONCLUSIONS: These findings indicate that aneuploidy-related and leukemia-specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets.
Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genômica/métodos , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Ciclo Celular , Bandeamento Cromossômico , Feminino , Dosagem de Genes , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteólise , Sequenciamento do Exoma , Adulto JovemRESUMO
BACKGROUND AND PURPOSE: Glioblastoma (GBM) is the most aggressive and frequent subtype of all malignant gliomas. At the time of recurrence, therapeutic options are lacking. Ortataxel, a second-generation taxane was reported to be effective in pre-clinical and phase I clinical studies. The aim of this study was to evaluate a potential therapeutic activity of ortataxel in patients with GBM recurring after surgery and first line treatment. METHODS: In this phase II study, according to a two stage design, adult patients with histologically confirmed GBM in recurrence after surgery or biopsy, standard radiotherapy and chemotherapy with temozolomide were considered eligible. Patients included were treated with ortataxel 75 mg/m2 i.v. every 3 weeks until disease progression. The primary objective of the study was to evaluate the activity of ortataxel in terms of progression free survival (PFS) at 6 months after the enrollment. PFS, overall survival at 9 months after the enrollment, objective response rate, compliance and safety were evaluated as secondary endpoints. RESULTS: Between Nov 26, 2013 and Dec 12, 2015, 40 patients were recruited across six centres. The number of patients alive and free from progression at 6 months after the enrollment, observed in the first stage was four (11.4%), out of 35 patients included in the analysis, below the minimum number of events (7 out of 33) required to continue the study with the second stage The most important toxicities were neutropenia and hepatotoxicity that occurred in 13.2% of patients and leukopenia that occurred in 15.8% of patients. CONCLUSION: Overall ortataxel treatment fail to demonstrate a significant activity in recurrent GBM patients. However in a limited number of patients the drug produced a benefit that lasted for a long time. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov, number NCT01989884.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Taxoides/uso terapêutico , Adulto , Idoso , Neoplasias Encefálicas/patologia , Feminino , Seguimentos , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Prognóstico , Taxa de SobrevidaRESUMO
We here describe a leukemogenic role of the homeobox gene UNCX, activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX-positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1, was revealed. Similar results were obtained in UNCX-transduced CD34+ cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX, associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML.