Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nanotechnology ; 24(41): 415202, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24060613

RESUMO

Current-voltage and Kelvin probe force microscopy (KPFM) measurements were performed on single ZnO nanowires. Measurements are shown to be strongly correlated with the contact behavior, either Ohmic or diode-like. The ZnO nanowires were obtained by metallo-organic chemical vapor deposition (MOCVD) and contacted using electronic-beam lithography. Depending on the contact geometry, good quality Ohmic contacts (linear I-V behavior) or non-linear (diode-like) contacts were obtained. Current-voltage and KPFM measurements on both types of contacted ZnO nanowires were performed in order to investigate their behavior. A clear correlation could be established between the I-V curve, the electrical potential profile along the device and the nanowire geometry. Some arguments supporting this behavior are given based on technological issues and on depletion region extension. This work will help to better understand the electrical behavior of Ohmic contacts on single ZnO nanowires, for future applications in nanoscale field-effect transistors and nano-photodetectors.


Assuntos
Nanofios/química , Óxido de Zinco/química , Eletricidade , Microscopia de Força Atômica , Nanotecnologia , Nanofios/ultraestrutura , Propriedades de Superfície
2.
Nanoscale Adv ; 4(8): 2018-2028, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133418

RESUMO

A method is proposed to estimate the lateral resolution of surface potential profile measurements using Kelvin probe force microscopy (KPFM) on operating electronic devices. De-embedding the measured profile from the system response is required for various applications, such as contact characterization of thin-film transistors, or local longitudinal electric field measurements. A method is developed based on the measurement of the electric potential profile of two metallic electrodes separated by a nano-gap, providing a quasi-planar configuration. The electrodes are independently biased so as to produce an abrupt and well-controlled potential step. This calibration sample is used to measure the system impulse response in various configurations. Due to the application constrains, the KPFM method employed here is based on a dual-pass mode, demonstrated to provide reliable measurements on operating electronic devices. The method is applied to two types of conductive AFM probes. Measurements are performed at different tip-to-sample heights allowing the determination of the lateral resolution of the double-pass method. Detailed description of the measurements and resolution results are given for the present KPFM configuration. The system resolution measurement technique can be extended to other KPFM modes and can be used to monitor the degradation of the tip quality during long measurement campaigns. Finally, the method is applied to the characterization of thin-film transistors, and the effects of contact edge sharpness on the device behavior is discussed. The longitudinal electric field responsible for charge injection at the source-contact edge is successfully estimated and compared for organic thin-film transistors fabricated by stencil lithography or electron-beam lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA