Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 47(7): 609-619, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35232626

RESUMO

PML is a stress-responsive protein that coordinates assembly of phase-separated nuclear aggregates, known as PML nuclear bodies (PML-NBs), where a large number of protein interactors and chromatin processes are finely regulated. Tampering with the PML gene produces a variety of phenotypic consequences that include promoting or interfering with tumor progression but the molecular underpinnings of PML pleiotropy are still elusive. In this review, we explore the contribution of PML splicing isoforms to PML-NB assorted activities. We describe recent literature indicating that distinct PML isoforms drive formation of specialized PML-NBs and perform unique functions and we suggest that future research efforts should delve into the contribution of isoform specificity to help elucidate the complex functionality of the PML gene.


Assuntos
Núcleo Celular , Núcleo Celular/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Nucleic Acids Res ; 51(20): 11024-11039, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823593

RESUMO

The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.


Assuntos
Cromatina , Neoplasias de Mama Triplo Negativas , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral
3.
Gastroenterology ; 162(4): 1242-1255.e11, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34922945

RESUMO

BACKGROUND & AIMS: Acinar to ductal metaplasia is the prerequisite for the initiation of Kras-driven pancreatic ductal adenocarcinoma (PDAC), and candidate genes regulating this process are emerging from genome-wide association studies. The adaptor protein p130Cas emerged as a potential PDAC susceptibility gene and a Kras-synthetic lethal interactor in pancreatic cell lines; however, its role in PDAC development has remained largely unknown. METHODS: Human PDAC samples and murine KrasG12D-dependent pancreatic cancer models of increasing aggressiveness were used. p130Cas was conditionally ablated in pancreatic cancer models to investigate its role during Kras-induced tumorigenesis. RESULTS: We found that high expression of p130Cas is frequently detected in PDAC and correlates with higher histologic grade and poor prognosis. In a model of Kras-driven PDAC, loss of p130Cas inhibits tumor development and potently extends median survival. Deletion of p130Cas suppresses acinar-derived tumorigenesis and progression by means of repressing PI3K-AKT signaling, even in the presence of a worsening condition like pancreatitis. CONCLUSIONS: Our observations finally demonstrated that p130Cas acts downstream of Kras to boost the PI3K activity required for acinar to ductal metaplasia and subsequent tumor initiation. This demonstrates an unexpected driving role of p130Cas downstream of Kras through PI3K/AKT, thus indicating a rational therapeutic strategy of targeting the PI3K pathway in tumors with high expression of p130Cas.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Proteína Substrato Associada a Crk , Neoplasias Pancreáticas , Células Acinares/patologia , Adenocarcinoma/patologia , Animais , Carcinogênese , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/patologia , Proteína Substrato Associada a Crk/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Metaplasia/patologia , Camundongos , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
4.
Cell Commun Signal ; 16(1): 73, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390666

RESUMO

BACKGROUND: p130 Crk-associated substrate (p130CAS; also known as BCAR1) is a scaffold protein that modulates many essential cellular processes such as cell adhesion, proliferation, survival, cell migration, and intracellular signaling. p130Cas has been shown to be highly expressed in a variety of human cancers of epithelial origin. However, few data are available regarding the role of p130Cas during normal epithelial development and homeostasis. METHODS: To this end, we have generated a genetically modified mouse in which p130Cas protein was specifically ablated in the epidermal tissue. RESULTS: By using this murine model, we show that p130Cas loss results in increased cell proliferation and reduction of cell adhesion to extracellular matrix. In addition, epidermal deletion of p130Cas protein leads to premature expression of "late" epidermal differentiation markers, altered membrane E-cadherin/catenin proteins localization and aberrant tyrosine phosphorylation of E-cadherin/catenin complexes. Interestingly, these alterations in adhesive properties in absence of p130Cas correlate with abnormalities in progenitor cells balance resulting in the amplification of a more committed cell population. CONCLUSION: Altogether, these results provide evidence that p130Cas is an important regulator of epidermal cell fate and homeostasis.


Assuntos
Adesão Celular , Diferenciação Celular , Proteína Substrato Associada a Crk/deficiência , Proteína Substrato Associada a Crk/genética , Epiderme/metabolismo , Deleção de Genes , Homeostase/genética , Animais , Proliferação de Células , Matriz Extracelular/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
5.
Cell Commun Signal ; 16(1): 90, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477510

RESUMO

Following publication of the original article [1], the authors reported an error in the name of the 11th author. The author's name was incorrectly published as "Vincenzo Calautti", instead of "Enzo Calautti".

6.
EMBO Mol Med ; 16(6): 1324-1351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38730056

RESUMO

Clear-cell renal cell carcinoma (ccRCC), the major subtype of RCC, is frequently diagnosed at late/metastatic stage with 13% 5-year disease-free survival. Functional inactivation of the wild-type p53 protein is implicated in ccRCC therapy resistance, but the detailed mechanisms of p53 malfunction are still poorly characterized. Thus, a better understanding of the mechanisms of disease progression and therapy resistance is required. Here, we report a novel ccRCC dependence on the promyelocytic leukemia (PML) protein. We show that PML is overexpressed in ccRCC and that PML depletion inhibits cell proliferation and relieves pathologic features of anaplastic disease in vivo. Mechanistically, PML loss unleashed p53-dependent cellular senescence thus depicting a novel regulatory axis to limit p53 activity and senescence in ccRCC. Treatment with the FDA-approved PML inhibitor arsenic trioxide induced PML degradation and p53 accumulation and inhibited ccRCC expansion in vitro and in vivo. Therefore, by defining non-oncogene addiction to the PML gene, our work uncovers a novel ccRCC vulnerability and lays the foundation for repurposing an available pharmacological intervention to restore p53 function and chemosensitivity.


Assuntos
Carcinoma de Células Renais , Senescência Celular , Neoplasias Renais , Proteína da Leucemia Promielocítica , Proteína Supressora de Tumor p53 , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Senescência Celular/efeitos dos fármacos , Animais , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Trióxido de Arsênio/farmacologia , Camundongos
7.
EMBO Mol Med ; 15(11): e17810, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37807875

RESUMO

One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Fatores de Transcrição/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/metabolismo , Tretinoína/uso terapêutico , Regulação da Expressão Gênica , Diferenciação Celular , Leucemia Promielocítica Aguda/tratamento farmacológico
8.
Sci Rep ; 9(1): 17729, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758081

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Sci Rep ; 9(1): 3089, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816273

RESUMO

The ErbB2 receptor tyrosine kinase is overexpressed in approximately 15-20% of breast tumors and associated with aggressive disease and poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration and proliferation in normal and pathological contexts. p130Cas overexpression in ErbB2 human breast cancer correlates with poor prognosis and metastasis formation. Recent data indicate that p130Cas association to ErbB2 protects ErbB2 from degradation, thus enhancing tumorigenesis. Therefore, inhibiting p130Cas/ErbB2 interaction might represent a new therapeutic strategy to target breast cancer. Here we demonstrate by performing Molecular Modeling, Molecular Dynamics, dot blot, ELISA and fluorescence quenching experiments, that p130Cas binds directly to ErbB2. Then, by structure-based virtual screening, we identified two potential inhibitors of p130Cas/ErbB2 interaction. Their experimental validation was performed in vitro and in ErbB2-positive breast cancer cellular models. The results highlight that both compounds interfere with p130Cas/ErbB2 binding and significantly affect cell proliferation and sensitivity to Trastuzumab. Overall, this study identifies p130Cas/ErbB2 complex as a potential breast cancer target revealing new therapeutic perspectives for protein-protein interaction (PPI).


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteína Substrato Associada a Crk/metabolismo , Descoberta de Drogas , Ligação Proteica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Escherichia coli/genética , Feminino , Células HEK293 , Humanos , Trastuzumab/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA