Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(9): 3444-3469, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260348

RESUMO

In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.


Assuntos
Arabidopsis , Estômatos de Plantas , Estômatos de Plantas/metabolismo , Folhas de Planta/metabolismo , Metabolismo dos Carboidratos , Fotossíntese , Arabidopsis/metabolismo , Amido/metabolismo
2.
Plant Cell ; 34(5): 2019-2037, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35157082

RESUMO

Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo
3.
New Phytol ; 232(6): 2295-2307, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617285

RESUMO

The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform. Mutants altered in suberin deposition had enhanced root hydraulic conductivity, indicating a restrictive role for this compound in water transport. In contrast, defective CS directly increased solute leakage and indirectly reduced root hydraulic conductivity. Defective CS also led to a reduction in rosette growth, which was partly dependent on the hydro-mineral status of the plant. Ectopic suberin was shown to partially compensate for defective CS phenotypes. Altogether, our work shows that the functionality of the root apoplastic diffusion barriers greatly influences the plant physiology, and that their integrity is tightly surveyed.


Assuntos
Arabidopsis , Água , Arabidopsis/genética , Parede Celular , Lipídeos , Raízes de Plantas
4.
Ann Bot ; 126(4): 647-660, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837221

RESUMO

BACKGROUND AND AIMS: Scaling from single-leaf to whole-canopy photosynthesis faces several complexities related to variations in light interception and leaf properties. To evaluate the impact of canopy strucuture on gas exchange, we developed a functional-structural plant model to upscale leaf processes to the whole canopy based on leaf N content. The model integrates different models that calculate intercepted radiation, leaf traits and gas exchange for each leaf in the canopy. Our main objectives were (1) to introduce the gas exchange model developed at the plant level by integrating the leaf-level responses related to canopy structure, (2) to test the model against an independent canopy gas exchange dataset recorded on different plant architectures, and (3) to quantify the impact of intra-canopy N distribution on crop photosynthesis. METHODS: The model combined a 3D reconstruction of grapevine (Vitis vinifera) canopy architecture, a light interception model, and a coupled photosynthesis and stomatal conductance model that considers light-driven variations in N distribution. A portable chamber device was constructed to measure whole-plant gas exchange to validate the model outputs with data collected on different training systems. Finally, a sensitivity analysis was performed to evaluate the impact on C assimilation of different N content distributions within the canopy. KEY RESULTS: By considering a non-uniform leaf N distribution within the canopy, our model accurately reproduced the daily pattern of gas exchange of different canopy architectures. The gain in photosynthesis permitted by the non-uniform compared with a theoretical uniform N distribution was about 18 %, thereby contributing to the maximization of C assimilation. By contrast, considering a maximal N content for all leaves in the canopy overestimated net CO2 exchange by 28 % when compared with the non-uniform distribution. CONCLUSIONS: The model reproduced the gas exchange of plants under different training systems with a low error (10 %). It appears to be a reliable tool to evaluate the impact of a grapevine training system on water use efficiency at the plant level.


Assuntos
Vitis , Fotossíntese , Folhas de Planta , Água
6.
Proc Natl Acad Sci U S A ; 113(32): 8963-8, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457942

RESUMO

Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.


Assuntos
Cruzamento , Transpiração Vegetal , Vitis/fisiologia , Água/metabolismo , Produtos Agrícolas , Locos de Características Quantitativas , Vitis/genética
7.
Plant Physiol ; 175(3): 1121-1134, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899961

RESUMO

Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (ΨM) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in ΨM It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone abscisic acid (ABA). Interestingly, recent lines of evidence in Arabidopsis (Arabidopsis thaliana) suggested that stomatal responsiveness is also controlled by an ABA action on leaf water supply upstream from stomata. Here, we tested the possibility in grapevine (Vitis vinifera) that different genotypes ranging from near isohydric to more anisohydric may have different sensitivities in these ABA responses. Measurements on whole plants in drought conditions were combined with assays on detached leaves fed with ABA. Two different methods consistently showed that leaf hydraulic conductance (Kleaf) was down-regulated by exogenous ABA, with strong variations depending on the genotype. Importantly, variation between isohydry and anisohydry correlated with Kleaf sensitivity to ABA, with Kleaf in the most anisohydric genotypes being unresponsive to the hormone. We propose that the observed response of Kleaf to ABA may be part of the overall ABA regulation of leaf water status.


Assuntos
Ácido Abscísico/farmacologia , Regulação para Baixo/efeitos dos fármacos , Folhas de Planta/fisiologia , Vitis/genética , Vitis/fisiologia , Água/fisiologia , Variação Genética , Genótipo , Modelos Biológicos , Exsudatos de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Vitis/efeitos dos fármacos
8.
Plant J ; 83(3): 466-79, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26058834

RESUMO

In most plants, NO(3)(-) constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of NO(3)(-) translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub-group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3-enriched Lactococcus lactis membranes showed that this protein is endowed with NO(3)(-) transport activity, displaying a strong selectivity for NO(3)(-) against Cl(-). In response to salt stress, NO(3)(-) translocation to shoots is reduced, at least partly because expression of the root stele NO(3)(-) transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss-of-function mutation in NPF2.3 resulted in decreased root-to-shoot NO(3)(-) translocation and reduced shoot NO(3)(-) content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na(+) in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to NO(3)(-) translocation to the shoots is quantitatively and physiologically significant under salinity.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Plantas/fisiologia , Tolerância ao Sal/fisiologia , Lactococcus lactis , Transportadores de Nitrato
9.
J Exp Bot ; 66(8): 2227-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25770586

RESUMO

Stomatal aperture, transpiration, leaf growth, hydraulic conductance, and concentration of abscisic acid in the xylem sap ([ABA]xyl) vary rapidly with time of day. They follow deterministic relations with environmental conditions and interact in such a way that a change in any one of them affects all the others. Hence, approaches based on measurements of one variable at a given time or on paired correlations are prone to a confusion of effects, in particular for studying their genetic variability. A dynamic model allows the simulation of environmental effects on the variables, and of multiple feedbacks between them at varying time resolutions. This paper reviews the control of water movement through the plant, stomatal aperture and growth, and translates them into equations in a model. It includes recent progress in understanding the intrinsic and environmental controls of tissue hydraulic conductance as a function of transpiration rate, circadian rhythms, and [ABA]xyl. Measured leaf water potential is considered as the water potential of a capacitance representing mature tissues, which reacts more slowly to environmental cues than xylem water potential and expansive growth. Combined with equations for water and ABA fluxes, it results in a dynamic model able to simulate variables with genotype-specific parameters. It allows adaptive roles for hydraulic processes to be proposed, in particular the circadian oscillation of root hydraulic conductance. The script of the model, in the R language, is included together with appropriate documentation and examples.


Assuntos
Ácido Abscísico/metabolismo , Modelos Biológicos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Água/metabolismo , Xilema/fisiologia
10.
J Exp Bot ; 65(21): 6205-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25381432

RESUMO

In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration.


Assuntos
Folhas de Planta/fisiologia , Transpiração Vegetal , Locos de Características Quantitativas , Vitis/genética , Água/fisiologia , Secas , Variação Genética
11.
New Phytol ; 197(1): 65-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23106390

RESUMO

The classical view that the drought-related hormone ABA simply acts locally at the guard cell level to induce stomatal closure is questioned by differences between isolated epidermis and intact leaves in stomatal response to several stimuli. We tested the hypothesis that ABA mediates, in addition to a local effect, a remote effect in planta by changing hydraulic regulation in the leaf upstream of the stomata. By gravimetry, porometry to water vapour and argon, and psychrometry, we investigated the effect of exogenous ABA on transpiration, stomatal conductance and leaf hydraulic conductance of mutants described as ABA-insensitive at the guard cell level. We show that foliar transpiration of several ABA-insensitive mutants decreases in response to ABA. We demonstrate that ABA decreases stomatal conductance and down-regulates leaf hydraulic conductance in both the wildtype Col-0 and the ABA-insensitive mutant ost2-2. We propose that ABA promotes stomatal closure in a dual way via its already known biochemical effect on guard cells and a novel, indirect hydraulic effect through a decrease in water permeability within leaf vascular tissues. Variability in sensitivity of leaf hydraulic conductance to ABA among species could provide a physiological basis to the isohydric or anisohydric behaviour.


Assuntos
Ácido Abscísico/farmacologia , Células Vegetais/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Argônio/metabolismo , Transporte Biológico , Secas , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Água/metabolismo
12.
Plant Methods ; 19(1): 146, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098093

RESUMO

BACKGROUND: Grapevine berries undergo asynchronous growth and ripening dynamics within the same bunch. Due to the lack of efficient methods to perform sequential non-destructive measurements on a representative number of individual berries, the genetic and environmental origins of this heterogeneity, remain nearly unknown. To address these limitations, we propose a method to track the growth and coloration kinetics of individual berries on time-lapse images of grapevine bunches. RESULTS: First, a deep-learning approach is used to detect berries with at least 50 ± 10% of visible contours, and infer the shape they would have in the absence of occlusions. Second, a tracking algorithm was developed to assign a common label to shapes representing the same berry along the time-series. Training and validation of the methods were performed on challenging image datasets acquired in a robotised high-throughput phenotyping platform. Berries were detected on various genotypes with a F1-score of 91.8%, and segmented with a mean absolute error of 4.1% on their area. Tracking allowed to label and retrieve the temporal identity of more than half of the segmented berries, with an accuracy of 98.1%. This method was used to extract individual growth and colour kinetics of various berries from the same bunch, allowing us to propose the first statistically relevant analysis of berry ripening kinetics, with a time resolution lower than one day. CONCLUSIONS: We successfully developed a fully-automated open-source method to detect, segment and track overlapping berries in time-series of grapevine bunch images acquired in laboratory conditions. This makes it possible to quantify fine aspects of individual berry development, and to characterise the asynchrony within the bunch. The interest of such analysis was illustrated here for one cultivar, but the method has the potential to be applied in a high throughput phenotyping context. This opens the way for revisiting the genetic and environmental variations of the ripening dynamics. Such variations could be considered both from the point of view of fruit development and the phenological structure of the population, which would constitute a paradigm shift.

13.
New Phytol ; 196(2): 349-366, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22924516

RESUMO

Leaf growth is the central process facilitating energy capture and plant performance. This is also one of the most sensitive processes to a wide range of abiotic stresses. Because hydraulics and metabolics are two major determinants of expansive growth (volumetric increase) and structural growth (dry matter increase), we review the interaction nodes between water and carbon. We detail the crosstalks between water and carbon transports, including the dual role of stomata and aquaporins in regulating water and carbon fluxes, the coupling between phloem and xylem, the interactions between leaf water relations and photosynthetic capacity, the links between Lockhart's hydromechanical model and carbon metabolism, and the central regulatory role of abscisic acid. Then, we argue that during leaf ontogeny, these interactions change dramatically because of uncoupled modifications between several anatomical and physiological features of the leaf. We conclude that the control of leaf growth switches from a metabolic to a hydromechanical limitation during the course of leaf ontogeny. Finally, we illustrate how taking leaf ontogeny into account provides insights into the mechanisms underlying leaf growth responses to abiotic stresses that affect water and carbon relations, such as elevated CO2, low light, high temperature and drought.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Carbono/metabolismo , Tamanho do Órgão , Folhas de Planta/anatomia & histologia , Transdução de Sinais
14.
Plant Physiol ; 156(2): 803-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474437

RESUMO

Leaf expansion is the central process by which plants colonize space, allowing energy capture and carbon acquisition. Water and carbon emerge as main limiting factors of leaf expansion, but the literature remains controversial about their respective contributions. Here, we tested the hypothesis that the importance of hydraulics and metabolics is organized according to both dark/light fluctuations and leaf ontogeny. For this purpose, we established the developmental pattern of individual leaf expansion during days and nights in the model plant Arabidopsis (Arabidopsis thaliana). Under control conditions, decreases in leaf expansion were observed at night immediately after emergence, when starch reserves were lowest. These nocturnal decreases were strongly exaggerated in a set of starch mutants, consistent with an early carbon limitation. However, low-light treatment of wild-type plants had no influence on these early decreases, implying that expansion can be uncoupled from changes in carbon availability. From 4 d after leaf emergence onward, decreases of leaf expansion were observed in the daytime. Using mutants impaired in stomatal control of transpiration as well as plants grown under soil water deficit or high air humidity, we gathered evidence that these diurnal decreases were the signature of a hydraulic limitation that gradually set up as the leaf developed. Changes in leaf turgor were consistent with this pattern. It is concluded that during the course of leaf ontogeny, the predominant control of leaf expansion switches from metabolics to hydraulics. We suggest that the leaf is better armed to buffer variations in the former than in the latter.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Água/química , Ar , Carboidratos/análise , Carbono/metabolismo , Ritmo Circadiano/fisiologia , Escuridão , Desidratação , Umidade , Mutação/genética , Fenótipo , Folhas de Planta/metabolismo , Estômatos de Plantas , Solo , Amido/metabolismo
15.
Plant Cell Environ ; 35(4): 702-18, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21988660

RESUMO

High temperature (HT) and water deficit (WD) are frequent environmental constraints restricting plant growth and productivity. These stresses often occur simultaneously in the field, but little is known about their combined impacts on plant growth, development and physiology. We evaluated the responses of 10 Arabidopsis thaliana natural accessions to prolonged elevated air temperature (30 °C) and soil WD applied separately or in combination. Plant growth was significantly reduced under both stresses and their combination was even more detrimental to plant performance. The effects of the two stresses were globally additive, but some traits responded specifically to one but not the other stress. Root allocation increased in response to WD, while reproductive allocation, hyponasty and specific leaf area increased under HT. All the traits that varied in response to combined stresses also responded to at least one of them. Tolerance to WD was higher in small-sized accessions under control temperature and HT and in accessions with high biomass allocation to root under control conditions. Accessions that originate from sites with higher temperature have less stomatal density and allocate less biomass to the roots when cultivated under HT. Independence and interaction between stresses as well as the relationships between traits and stress responses are discussed.


Assuntos
Arabidopsis/fisiologia , Temperatura Alta/efeitos adversos , Estresse Fisiológico/fisiologia , Água/fisiologia , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Biomassa , Cotilédone/anatomia & histologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/fisiologia , Desidratação , Fenótipo , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Solo
16.
Plant Cell Environ ; 35(7): 1313-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22329397

RESUMO

Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season.


Assuntos
Aclimatação , Modelos Biológicos , Nitrogênio/análise , Folhas de Planta/efeitos da radiação , Vitis/efeitos da radiação , Fotossíntese , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal
17.
Plant Cell Environ ; 34(8): 1258-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21477119

RESUMO

We have dissected the influences of apoplastic pH and cell turgor on short-term responses of leaf growth to plant water status, by using a combination of a double-barrelled pH-selective microelectrodes and a cell pressure probe. These techniques were used, together with continuous measurements of leaf elongation rate (LER), in the (hidden) elongating zone of the leaves of intact maize plants while exposing roots to various treatments. Polyethylene glycol (PEG) reduced water availability to roots, while acid load and anoxia decreased root hydraulic conductivity. During the first 30 min, acid load and anoxia induced moderate reductions in leaf growth and turgor, with no effect on leaf apoplastic pH. PEG stopped leaf growth, while turgor was only partially reduced. Rapid alkalinization of the apoplast, from pH 4.9 ± 0.3 to pH 5.8 ± 0.2 within 30 min, may have participated to this rapid growth reduction. After 60 min, leaf growth inhibition correlated well with turgor reduction across all treatments, supporting a growth limitation by hydraulics. We conclude that apoplastic alkalinization may transiently impair the control of leaf growth by cell turgor upon abrupt water stress, whereas direct hydraulic control of growth predominates under moderate conditions and after a 30-60 min delay following imposition of water stress.


Assuntos
Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Zea mays/fisiologia , Desidratação , Regulação para Baixo , Combinação de Medicamentos , Concentração de Íons de Hidrogênio , Microeletrodos , Pressão Osmótica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Polietileno/farmacologia , Procaína , Propionatos/farmacologia , Estresse Fisiológico , Zea mays/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 105(13): 5271-6, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18367672

RESUMO

At least four genes encoding plasma membrane inward K+ channels (K(in) channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major K(in) channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell K(in) channel (GCK(in)) activity, providing a model to investigate the roles of this activity in the plant. GCK(in) activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCK(in) activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCK(in) activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments.


Assuntos
Adaptação Biológica , Biomassa , Meio Ambiente , Canais de Potássio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Eletrofisiologia , Luz , Mutação/genética , Técnicas de Patch-Clamp , Plantas Geneticamente Modificadas , Canais de Potássio/genética , Engenharia de Proteínas
19.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544146

RESUMO

Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.


Assuntos
Secas , Locos de Características Quantitativas , Mapeamento Cromossômico , Genômica , Fenótipo
20.
Plant Cell Physiol ; 51(12): 1975-87, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952421

RESUMO

Plants overcome water deficit conditions by combining molecular, biochemical and morphological changes. At the molecular level, many stress-responsive genes have been isolated, but knowledge of their physiological functions remains fragmentary. Here, we report data for RD20, a stress-inducible Arabidopsis gene that belongs to the caleosin family. As for other caleosins, we showed that RD20 localized to oil bodies. Although caleosins are thought to play a role in the degradation of lipids during seed germination, induction of RD20 by dehydration, salt stress and ABA suggests that RD20 might be involved in processes other than germination. Using plants carrying the promoter RD20::uidA construct, we show that RD20 is expressed in leaves, guard cells and flowers, but not in root or in mature seeds. Water deficit triggers a transient increase in RD20 expression in leaves that appeared predominantly dependent on ABA signaling. To assess the biological significance of these data, a functional analysis using rd20 knock-out and overexpressing complemented lines cultivated either in standard or in water deficit conditions was performed. The rd20 knock-out plants present a higher transpiration rate that correlates with enhanced stomatal opening and a reduced tolerance to drought as compared with the wild type. These results support a role for RD20 in drought tolerance through stomatal control under water deficit conditions.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Secas , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Sais/efeitos adversos , Deleção de Sequência , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA