Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Cell ; 173(3): 706-719.e13, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677514

RESUMO

Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.


Assuntos
Arginina/química , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Citoplasma/metabolismo , Metilação de DNA , DNA Complementar/metabolismo , Densitometria , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Homeostase , Humanos , Carioferinas/química , Espectroscopia de Ressonância Magnética , Metilação , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/metabolismo , Ligação Proteica , Domínios Proteicos
2.
Cell ; 156(1-2): 277-90, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439382

RESUMO

Central nervous system myelin is a multilayered membrane sheath generated by oligodendrocytes for rapid impulse propagation. However, the underlying mechanisms of myelin wrapping have remained unclear. Using an integrative approach of live imaging, electron microscopy, and genetics, we show that new myelin membranes are incorporated adjacent to the axon at the innermost tongue. Simultaneously, newly formed layers extend laterally, ultimately leading to the formation of a set of closely apposed paranodal loops. An elaborated system of cytoplasmic channels within the growing myelin sheath enables membrane trafficking to the leading edge. Most of these channels close with ongoing development but can be reopened in adults by experimentally raising phosphatidylinositol-(3,4,5)-triphosphate levels, which reinitiates myelin growth. Our model can explain assembly of myelin as a multilayered structure, abnormal myelin outfoldings in neurological disease, and plasticity of myelin biogenesis observed in adult life.


Assuntos
Axônios/metabolismo , Bainha de Mielina/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/metabolismo , Camundongos , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Peixe-Zebra
3.
Nature ; 618(7964): 349-357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258678

RESUMO

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Bainha de Mielina , Placa Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Axônios/metabolismo , Axônios/patologia , Microglia/metabolismo , Microglia/patologia , Análise da Expressão Gênica de Célula Única , Fatores de Risco , Progressão da Doença
4.
Immunity ; 48(5): 937-950.e8, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768177

RESUMO

Infections are thought to trigger CD8+ cytotoxic T lymphocyte (CTL) responses during autoimmunity. However, the transcriptional programs governing the tissue-destructive potential of CTLs remain poorly defined. In a model of central nervous system (CNS) inflammation, we found that infection with lymphocytic choriomeningitis virus (LCMV), but not Listeria monocytogenes (Lm), drove autoimmunity. The DNA-binding factor TOX was induced in CTLs during LCMV infection and was essential for their encephalitogenic properties, and its expression was inhibited by interleukin-12 during Lm infection. TOX repressed the activity of several transcription factors (including Id2, TCF-1, and Notch) that are known to drive CTL differentiation. TOX also reduced immune checkpoint sensitivity by restraining the expression of the inhibitory checkpoint receptor CD244 on the surface of CTLs, leading to increased CTL-mediated damage in the CNS. Our results identify TOX as a transcriptional regulator of tissue-destructive CTLs in autoimmunity, offering a potential mechanistic link to microbial triggers.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Homeodomínio/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Adulto , Idoso , Animais , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia
5.
Physiol Rev ; 99(3): 1381-1431, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066630

RESUMO

Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.


Assuntos
Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiologia , Bainha de Mielina/fisiologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Doenças Desmielinizantes/patologia , Humanos , Bainha de Mielina/ultraestrutura
6.
J Biol Chem ; 299(4): 103027, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805335

RESUMO

Imbalances in the amounts of amyloid-ß peptides (Aß) generated by the membrane proteases ß- and γ-secretase are considered as a trigger of Alzheimer's disease (AD). Cell-free studies of γ-secretase have shown that increasing membrane thickness modulates Aß generation but it has remained unclear if these effects are translatable to cells. Here we show that the very long-chain fatty acid erucic acid (EA) triggers acyl chain remodeling in AD cell models, resulting in substantial lipidome alterations which included increased esterification of EA in membrane lipids. Membrane remodeling enhanced γ-secretase processivity, resulting in the increased production of the potentially beneficial Aß37 and/or Aß38 species in multiple cell lines. Unexpectedly, we found that the membrane remodeling stimulated total Aß secretion by cells expressing WT γ-secretase but lowered it for cells expressing an aggressive familial AD mutant γ-secretase. We conclude that EA-mediated modulation of membrane composition is accompanied by complex lipid homeostatic changes that can impact amyloidogenic processing in different ways and elicit distinct γ-secretase responses, providing critical implications for lipid-based AD treatment strategies.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Lipídeos de Membrana/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Linhagem Celular , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/metabolismo
7.
EMBO J ; 39(20): e105693, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954517

RESUMO

To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the "high-performance secretome protein enrichment with click sugars" (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS-induced neuroinflammation and to establish the cell type-resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer-linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type-specific biomarkers for CNS diseases.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Proteômica/métodos , Software , Proteínas ADAM/líquido cefalorraquidiano , Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Animais , Antígenos CD/líquido cefalorraquidiano , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/líquido cefalorraquidiano , Encéfalo/citologia , Células Cultivadas , Proteínas do Líquido Cefalorraquidiano , Cromatografia Líquida , Ontologia Genética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/metabolismo , Análise de Componente Principal , Proteoma/metabolismo , Espectrometria de Massas em Tandem
8.
J Neuroinflammation ; 21(1): 30, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263017

RESUMO

BACKGROUND AND OBJECTIVES: 18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between ß-amyloid-accumulation and microglial activation in AD. METHODS: 49 patients with AD (29 females, all Aß-positive) and 15 Aß-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and ß-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional Aß-PET on TSPO-PET was used to determine the Aß-plaque-dependent microglial response (slope) and the Aß-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI). RESULTS: In AD, females showed higher mean cortical TSPO-PET z-scores (0.91 ± 0.49; males 0.30 ± 0.75; p = 0.002), while Aß-PET z-scores were similar. The Aß-plaque-independent microglial response was stronger in females with AD (+ 0.37 ± 0.38; males with AD - 0.33 ± 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the Aß-plaque-dependent microglial response was not different between sexes. The Aß-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the Aß-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005). CONCLUSION: While microglia response to fibrillar Aß is similar between sexes, women with AD show a stronger Aß-plaque-independent microglia response. This sex difference in Aß-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the Aß-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Feminino , Masculino , Índice de Massa Corporal , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides , Obesidade , Receptores de GABA
9.
Mol Psychiatry ; 28(10): 4438-4450, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495886

RESUMO

ß-amyloid (Aß) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aß-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aß (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aß (AD: ßT = 0.412 ± 0.196 vs. ßA = 0.142 ± 0.123, p < 0.001; AD-CBS: ßT = 0.385 ± 0.176 vs. ßA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (ßT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aß related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Microglia/patologia , Doenças Neuroinflamatórias , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Atrofia/patologia , Biomarcadores , Proteínas tau , Receptores de GABA
11.
Alzheimers Dement ; 19(2): 632-645, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35609137

RESUMO

INTRODUCTION: As knowledge about neurological examination findings in autosomal dominant Alzheimer disease (ADAD) is incomplete, we aimed to determine the frequency and significance of neurological examination findings in ADAD. METHODS: Frequencies of neurological examination findings were compared between symptomatic mutation carriers and non mutation carriers from the Dominantly Inherited Alzheimer Network (DIAN) to define AD neurological examination findings. AD neurological examination findings were analyzed regarding frequency, association with and predictive value regarding cognitive decline, and association with brain atrophy in symptomatic mutation carriers. RESULTS: AD neurological examination findings included abnormal deep tendon reflexes, gait disturbance, pathological cranial nerve examination findings, tremor, abnormal finger to nose and heel to shin testing, and compromised motor strength. The frequency of AD neurological examination findings was 65.1%. Cross-sectionally, mutation carriers with AD neurological examination findings showed a more than two-fold faster cognitive decline and had greater parieto-temporal atrophy, including hippocampal atrophy. Longitudinally, AD neurological examination findings predicted a significantly greater decline over time. DISCUSSION: ADAD features a distinct pattern of neurological examination findings that is useful to estimate prognosis and may inform clinical care and therapeutic trial designs.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Disfunção Cognitiva/genética , Exame Neurológico
12.
FASEB J ; 35(11): e21962, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34613632

RESUMO

Proteolytic ectodomain shedding of membrane proteins is a fundamental mechanism to control the communication between cells and their environment. A key protease for membrane protein shedding is ADAM17, which requires a non-proteolytic subunit, either inactive Rhomboid 1 (iRhom1) or iRhom2 for its activity. While iRhom1 and iRhom2 are co-expressed in most tissues and appear to have largely redundant functions, the brain is an organ with predominant expression of iRhom1. Yet, little is known about the spatio-temporal expression of iRhom1 in mammalian brain and about its function in controlling membrane protein shedding in the nervous system. Here, we demonstrate that iRhom1 is expressed in mouse brain from the prenatal stage to adulthood with a peak in early postnatal development. In the adult mouse brain iRhom1 was widely expressed, including in cortex, hippocampus, olfactory bulb, and cerebellum. Proteomic analysis of the secretome of primary neurons using the hiSPECS method and of cerebrospinal fluid, obtained from iRhom1-deficient and control mice, identified several membrane proteins that require iRhom1 for their shedding in vitro or in vivo. One of these proteins was 'multiple-EGF-like-domains protein 10' (MEGF10), a phagocytic receptor in the brain that is linked to the removal of amyloid ß and apoptotic neurons. MEGF10 was further validated as an ADAM17 substrate using ADAM17-deficient mouse embryonic fibroblasts. Taken together, this study discovers a role for iRhom1 in controlling membrane protein shedding in the mouse brain, establishes MEGF10 as an iRhom1-dependent ADAM17 substrate and demonstrates that iRhom1 is widely expressed in murine brain.


Assuntos
Proteína ADAM17/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas
13.
Eur J Neurol ; 29(1): 12-18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34472165

RESUMO

BACKGROUND AND PURPOSE: Knowledge about the seizure prevalence in the whole symptomatic course, from disease onset to death, in neurodegenerative diseases (ND) is lacking. Therefore, the aim was to investigate seizure prevalence and associated clinical implications in neuropathologically diagnosed ND. METHODS: Clinical records of cases from the Neurobiobank Munich, Germany, were analyzed. Neuropathological diagnoses of the assessed cases included Alzheimer disease (AD), corticobasal degeneration (CBD), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Seizure prevalence during the whole symptomatic disease phase was assessed and compared amongst ND. Associations between first clinical symptom and seizure prevalence and between seizures and disease duration were examined. RESULTS: In all, 454 patients with neuropathologically diagnosed ND and with available and meaningful clinical records were investigated (AD, n = 144; LBD, n = 103; PSP, n = 93; FTLD, n = 53; MSA, n = 36; CBD, n = 25). Seizure prevalence was 31.3% for AD, 20.0% for CBD, 12.6% for LBD, 11.3% for FTLD, 8.3% for MSA and 7.5% for PSP. Seizure prevalence was significantly higher in AD compared to FTLD (p = 0.005), LBD (p = 0.001), MSA (p = 0.005) and PSP (p < 0.001). No other significant differences regarding seizure prevalence were found between the studied ND. Cognitive first symptoms in ND were associated with an increased seizure prevalence (21.1% vs. 11.0% in patients without cognitive first symptoms) and motor first symptoms with a decreased seizure prevalence (10.3% vs. 20.5% in patients without motor first symptoms). Seizures were associated with a longer disease duration in MSA (12.3 vs. 7.0 years in patients without seizures; p = 0.017). CONCLUSIONS: Seizures are a clinically relevant comorbidity in ND, particularly in AD. Knowledge of the first clinical symptom in ND may allow for estimation of seizure risk.


Assuntos
Atrofia de Múltiplos Sistemas , Paralisia Supranuclear Progressiva , Autopsia , Humanos , Atrofia de Múltiplos Sistemas/epidemiologia , Atrofia de Múltiplos Sistemas/patologia , Prevalência , Convulsões/epidemiologia , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/epidemiologia
14.
J Neurosci ; 40(34): 6503-6521, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32661024

RESUMO

Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex.SIGNIFICANCE STATEMENT We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/crescimento & desenvolvimento , Microglia/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Capilares/crescimento & desenvolvimento , Capilares/ultraestrutura , Córtex Cerebral/ultraestrutura , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microglia/ultraestrutura , Córtex Somatossensorial/metabolismo
15.
Mol Syst Biol ; 16(6): e9356, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32485097

RESUMO

Neurodegenerative diseases are a growing burden, and there is an urgent need for better biomarkers for diagnosis, prognosis, and treatment efficacy. Structural and functional brain alterations are reflected in the protein composition of cerebrospinal fluid (CSF). Alzheimer's disease (AD) patients have higher CSF levels of tau, but we lack knowledge of systems-wide changes of CSF protein levels that accompany AD. Here, we present a highly reproducible mass spectrometry (MS)-based proteomics workflow for the in-depth analysis of CSF from minimal sample amounts. From three independent studies (197 individuals), we characterize differences in proteins by AD status (> 1,000 proteins, CV < 20%). Proteins with previous links to neurodegeneration such as tau, SOD1, and PARK7 differed most strongly by AD status, providing strong positive controls for our approach. CSF proteome changes in Alzheimer's disease prove to be widespread and often correlated with tau concentrations. Our unbiased screen also reveals a consistent glycolytic signature across our cohorts and a recent study. Machine learning suggests clinical utility of this proteomic signature.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Proteoma/metabolismo , Proteômica , Estudos de Coortes , Glicólise , Humanos , Aprendizado de Máquina , Degeneração Neural/patologia , Neurônios/metabolismo , Reprodutibilidade dos Testes , Proteínas tau/líquido cefalorraquidiano
16.
Eur J Neurol ; 28(6): 1801-1811, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662165

RESUMO

BACKGROUND AND PURPOSE: Clinical diagnostic criteria for neurodegenerative diseases have been framed based on clinical phenomenology. However, systematic knowledge about the first reported clinical symptoms in neurodegenerative diseases is lacking. Therefore, the aim was to determine the prevalence and clinical implications of the first clinical symptom (FS) as assessed by medical history in neuropathologically proven neurodegenerative diseases. METHODS: Neuropathological diagnoses from the Neurobiobank Munich, Germany, were matched with clinical records for analyses of the diagnostic and prognostic values of FSs. RESULTS: In all, 301 patients with the neuropathological diagnoses Alzheimer disease (AD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD) including the neuropathologically indistinguishable clinical phenotypes Parkinson disease and dementia with Lewy bodies, multiple system atrophy (MSA) and corticobasal degeneration (CBD) were studied. Memory disturbance was the most common FS in AD (34%), FTLD (19%) and LBD (26%), gait disturbance in PSP (35%) and MSA (27%) and aphasia and personality changes in CBD (20%, respectively). In a model adjusting for prevalence in the general population, AD was predicted by memory disturbance in 79.0%, aphasia in 97.2%, personality changes in 96.0% and by cognitive disturbance in 99.0%. Gait disturbance and tremor predicted LBD in 54.6% and 97.3%, coordination disturbance MSA in 59.4% and dysarthria FTLD in 73.0%. Cognitive FSs were associated with longer survival in AD (12.0 vs. 5.3 years; p < 0.001) and FTLD (8.2 vs. 4.1 years; p = 0.005) and motor FSs with shorter survival in PSP (7.2 vs. 9.7; p = 0.048). CONCLUSIONS: Assessing FSs in neurodegenerative diseases may be beneficial for accuracy of diagnosis and prognosis and thereby may improve clinical care and precision of study recruitment.


Assuntos
Atrofia de Múltiplos Sistemas , Paralisia Supranuclear Progressiva , Autopsia , Humanos , Prognóstico , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/epidemiologia
18.
Eur Arch Psychiatry Clin Neurosci ; 270(4): 413-424, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31552495

RESUMO

In schizophrenia, decreased hippocampal volume, reduced oligodendrocyte numbers in hippocampal cornu ammonis (CA) subregions and reduced neuron number in the dentate gyrus have been reported; reduced oligodendrocyte numbers were significantly related to cognitive deficits. The hippocampus is involved in cognitive functions and connected to the hypothalamus, anterior thalamus, and cingulate cortex, forming the Papez circuit, and to the mediodorsal thalamus. The relationship between the volume of these interconnected regions and oligodendrocyte and neuron numbers in schizophrenia is unknown. Therefore, we used stepwise logistic regression with subsequent multivariate stepwise linear regression and bivariate correlation to analyze oligodendrocyte and neuron numbers in the posterior hippocampal subregions CA1, CA2/3, CA4, dentate gyrus, and subiculum and volumes of the hippocampal CA region, cingulum, anterior and mediodorsal thalamus and hypothalamus in postmortem brains of 10 schizophrenia patients and 11 age- and gender-matched healthy controls. Stepwise logistic regression identified the following predictors for diagnosis, in order of inclusion: (1) oligodendrocyte number in CA4, (2) hypothalamus volume, (3) oligodendrocyte number in CA2/3, and (4) mediodorsal thalamus volume. Subsequent stepwise linear regression analyses identified the following predictors: (1) for oligodendrocyte number in CA4: (a) oligodendrocyte number in CA2/3, (b) diagnostic group, (c) hypothalamus volume, and (d) neurons in posterior subiculum; (2) for hypothalamus volume: (a) mediodorsal thalamus volume; (3) for oligodendrocyte number in CA2/3: oligodendrocyte number (a) in posterior CA4 and (b) in posterior subiculum; (4) for mediodorsal thalamus volume: volumes of (a) anterior thalamus and (b) hippocampal CA. In conclusion, we found a positive relationship between hippocampal oligodendrocyte number and the volume of the hypothalamus, a brain region connected to the hippocampus, which is important for cognition.


Assuntos
Hipocampo/patologia , Hipotálamo/patologia , Rede Nervosa/patologia , Oligodendroglia/citologia , Esquizofrenia/patologia , Tálamo/patologia , Adulto , Autopsia , Feminino , Hipocampo/citologia , Humanos , Hipotálamo/citologia , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico
19.
Mol Cell ; 46(5): 705-13, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681891

RESUMO

Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation.


Assuntos
Diferenciação Celular/genética , Histonas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Linhagem Celular , Montagem e Desmontagem da Cromatina , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
20.
Glia ; 67(11): 2063-2070, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30860619

RESUMO

There is now increasing evidence that myelin is not only generated early in development, but also during adulthood possibly contributing to lifelong plasticity of the brain. In particular, human cortical areas responsible for the highest cognitive functions seem to require decades until they have reached their maximal amount of myelination. Currently, we know very little about the mechanisms and the functions of grey matter myelination. In this emerging field key questions await to be addressed: How long does myelination last in humans? How is grey matter myelination regulated? What is the function of myelin in the grey matter? Does grey matter myelination limit and/or promote neuronal plasticity? Finding answers to these questions will be important for our understanding of normal, but also abnormal cortex function in a number of neurological and psychiatric diseases.


Assuntos
Cognição/fisiologia , Substância Cinzenta/fisiologia , Bainha de Mielina/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Humanos , Oligodendroglia/fisiologia , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA