Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31395676

RESUMO

Human running is inefficient. For every 10 calories burned, less than 1 is needed to maintain a constant forward velocity - the remaining energy is, in a sense, wasted. The majority of this wasted energy is expended to support the bodyweight and redirect the center of mass during the stance phase of gait. An order of magnitude less energy is expended to brake and accelerate the swinging leg. Accordingly, most devices designed to increase running efficiency have targeted the costlier stance phase of gait. An alternative approach is seen in nature: spring-like tissues in some animals and humans are believed to assist leg swing. While it has been assumed that such a spring simply offloads the muscles that swing the legs, thus saving energy, this mechanism has not been experimentally investigated. Here, we show that a spring, or 'exotendon', connecting the legs of a human reduces the energy required for running by 6.4±2.8%, and does so through a complex mechanism that produces savings beyond those associated with leg swing. The exotendon applies assistive forces to the swinging legs, increasing the energy optimal stride frequency. Runners then adopt this frequency, taking faster and shorter strides, and reduce the joint mechanical work to redirect their center of mass. Our study shows how a simple spring improves running economy through a complex interaction between the changing dynamics of the body and the adaptive strategies of the runner, highlighting the importance of considering each when designing systems that couple human and machine.


Assuntos
Marcha/fisiologia , Perna (Membro)/fisiologia , Corrida , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Distribuição Aleatória , Adulto Jovem
2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941216

RESUMO

Post-stroke upper extremity function can be improved by devices that support shoulder abduction. However, many of these devices provide limited assistance in activities of daily living due to their complexity and encumbrance. We developed and evaluated a passive, lightweight (0.6 kg) wearable device consisting of an aluminum frame and elastic bands attached to a posture vest to aid in shoulder abduction. The number and thickness of bands can be adjusted to provide supportive forces to the affected arm. We measured reachable workspace area and Wolf Motor Function Test (WMFT) performance in people with a history of stroke (n = 11) with and without the wearable. The device increased workspace area in 6 participants and improved average WMFT functional and timing scores in 7 and 12 tasks, respectively, out of 16 total tasks. On average, participants increased their arm motion within 20 cm of shoulder level by 22.4% and decreased their hand's average distance from trunk by 15.2%, both improvements in the device case.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Humanos , Ombro , Atividades Cotidianas , Extremidade Superior
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3721-3724, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892045

RESUMO

Quantitative Magnetic Resonance Imaging (MRI) can enable early diagnosis of knee cartilage damage if imaging is performed during the application of load. Mechanical loading via ropes, pulleys and suspended weights can be obstructive and require adaptations to the patient table. In this paper, a new lightweight MRI-compatible elastic loading mechanism is introduced. The new device showed sufficient linearity (|α/ß| = 0.42 ± 0.25), reproducibility (CoV = 5 ± 2%), and stability (CoV = 0.5 ± 0.1%). In vivo and ex vivo scans confirmed the ability of the device to exert sufficient force to study the knee cartilage under loading conditions, inducing up to a 29% decrease in $T_2^{\ast}$ of the central medial cartilage. With this device mechanical loading can become more accessible for researchers and clinicians, thus facilitating the translational use of MRI biomarkers for the detection of cartilage deterioration.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes
4.
Sci Rep ; 9(1): 18079, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792226

RESUMO

Human walking speeds can be influenced by multiple factors, from energetic considerations to the time to reach a destination. Neurological deficits or lower-limb injuries can lead to slower walking speeds, and the recovery of able-bodied gait speed and behavior from impaired gait is considered an important rehabilitation goal. Because gait studies are typically performed at faster speeds, little normative data exists for very slow speeds (less than 0.6 ms[Formula: see text]). The purpose of our study was to investigate healthy gait mechanics at extremely slow walking speeds. We recorded kinematic and kinetic data from eight adult subjects walking at four slow speeds from 0.1 ms[Formula: see text]   to 0.6 ms[Formula: see text]   and at their self-selected speed. We found that known relations for spatiotemporal and work measures are still valid at very slow speeds. Trends derived from slow speeds largely provided reasonable estimates of gait measures at self-selected speeds. Our study helps enable valuable comparisons between able-bodied and impaired gait, including which pathological behaviors can be attributed to slow speeds and which to gait deficits. We also provide a slow walking dataset, which may serve as normative data for clinical evaluations and gait rehabilitative devices.


Assuntos
Caminhada , Adulto , Fenômenos Biomecânicos , Feminino , Marcha , Humanos , Cinética , Masculino , Velocidade de Caminhada , Adulto Jovem
5.
IEEE Int Conf Rehabil Robot ; 2017: 31-37, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813789

RESUMO

The healthy human nervous system accurately and robustly controls movements despite nonlinear dynamics, noise, and delays. After a stroke, motor ability frequently becomes impaired. To provide insight into the relative impact of specific sensorimotor deficits on motor performance, we modeled neural control of reaching with the human upper limb as a near-optimally feedback-controlled two-degree-of-freedom system with biologically based parameters. We added three sensorimotor impairments commonly associated with post-stroke hemiparesis - abnormal joint coupling, increased noise on internally modeled dynamics, and muscular weakness - and examined the impact on reaching performance. We found that abnormal joint coupling unknown to the system's internal model caused systematic perturbations to trajectories, longer reach durations, and target overshoot. Increasing internal model noise and muscular weakness had little impact on motor performance unless model noise was increased by several orders of magnitude. Many reaches performed by our perturbed models replicate features commonly observed in reaches by hemiparetic stroke survivors. The sensitivity to unmodeled abnormal joint coupling agrees with experimental findings that abnormal coupling (possibly related to internal model errors) is the main cause of post-stroke motor impairment.


Assuntos
Modelos Neurológicos , Paresia/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Retroalimentação Fisiológica , Humanos , Robótica
6.
Front Comput Neurosci ; 11: 45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611619

RESUMO

While movement is essential to human wellbeing, we are still unable to reproduce the deftness and robustness of human movement in automatons or completely restore function to individuals with many types of motor impairment. To better understand how the human nervous system plans and controls movements, neuromechanists employ simple tasks such as upper extremity reaches and isometric force tasks. However, these simple tasks rarely consider impacts and may not capture aspects of motor control that arise from real-world complexity. Here we compared existing models of motor control with the results of a periodic targeted impact task extended from Bernstein's seminal work: hammering a nail into wood. We recorded impact forces and kinematics from 10 subjects hammering at different frequencies and with hammers with different physical properties (mass and face area). We found few statistical differences in most measures between different types of hammer, demonstrating human robustness to minor changes in dynamics. Because human motor control is thought to obey optimality principles, we also developed a feedforward optimal simulation with a neuromechanically inspired cost function that reproduces the experimental data. However, Fitts' Law, which relates movement time to distance traveled and target size, did not match our experimental data. We therefore propose a new model in which the distance moved is a logarithmic function of the time to move that yields better results (R2 ≥ 0.99 compared to R2 ≥ 0.88). These results support the argument that humans control movement in an optimal way, but suggest that Fitts' Law may not generalize to periodic impact tasks.

7.
J Biomech ; 48(12): 2990-7, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26300401

RESUMO

Although it is possible to produce the same movement using an infinite number of different muscle activation patterns owing to musculoskeletal redundancy, the degree to which observed variations in muscle activity can deviate from optimal solutions computed from biomechanical models is not known. Here, we examined the range of biomechanically permitted activation levels in individual muscles during human walking using a detailed musculoskeletal model and experimentally-measured kinetics and kinematics. Feasible muscle activation ranges define the minimum and maximum possible level of each muscle's activation that satisfy inverse dynamics joint torques assuming that all other muscles can vary their activation as needed. During walking, 73% of the muscles had feasible muscle activation ranges that were greater than 95% of the total muscle activation range over more than 95% of the gait cycle, indicating that, individually, most muscles could be fully active or fully inactive while still satisfying inverse dynamics joint torques. Moreover, the shapes of the feasible muscle activation ranges did not resemble previously-reported muscle activation patterns nor optimal solutions, i.e. static optimization and computed muscle control, that are based on the same biomechanical constraints. Our results demonstrate that joint torque requirements from standard inverse dynamics calculations are insufficient to define the activation of individual muscles during walking in healthy individuals. Identifying feasible muscle activation ranges may be an effective way to evaluate the impact of additional biomechanical and/or neural constraints on possible versus actual muscle activity in both normal and impaired movements.


Assuntos
Músculos/fisiologia , Caminhada/fisiologia , Adolescente , Fenômenos Biomecânicos , Estudos de Viabilidade , Marcha/fisiologia , Humanos , Cinética , Masculino , Modelos Biológicos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA