Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Small ; : e2311155, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516961

RESUMO

Herein, a Safe-and-Sustainable-by-Design (SSbD) screening strategy on four different inorganic aerogel mats and two conventional mineral wools for ranking purposes is demonstrated. Given that they do not consist of particles, the release is first simulated, addressing three occupational exposure scenarios, realistic for their intended use as building insulators. No exposure to consumers nor to the environment is foreseen in the use phase, however, aerosols may be released during mat installation, posing an inhalation risk for workers. All four aerogel mats release more respirable dust than the benchmark materials and 60% thereof deposits in the alveolar region according to modelling tools. The collected aerogel dust allows for subsequent screening of hazard implications via two abiotic assays: 1) surface reactivity in human blood serum; 2) biodissolution kinetics in lung simulant fluids. Both aerogels and conventional insulators show similar surface reactivity. Differences in biodissolution are influenced by the specifically designed organic and inorganic structural modifications. Aerogel mats are better-performing insulators (2-fold lower thermal conductivity than the benchmark) However, this work demonstrates how investment decisions can be balanced with safety and sustainability aspects. Concepts of analogy and similarity thus support easily accessible methods to companies for safe and economically viable innovation with advanced materials.

2.
AAPS PharmSciTech ; 25(5): 129, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844700

RESUMO

Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neoplasias Pulmonares , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/genética , Edição de Genes/métodos , Animais , Terapia Genética/métodos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Técnicas de Transferência de Genes , Sistemas de Liberação de Medicamentos/métodos , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/genética , Nanopartículas
3.
Saudi Pharm J ; 32(4): 101999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454919

RESUMO

The purpose of this study was to enhance the topical delivery of 5-Fluorouracil (5-FU), a cancer treatment, by developing a nanoemulgel formulation. Glycyrrhizin (GLY), a natural penetration enhancer has been investigated to exhibit synergistic effects with 5-FU in inhibiting melanoma cell proliferation and inducing apoptosis, Hence, GLY, along with suitable lipids was utilized to create an optimized nanoemulsion (NE) based gel. Solubility studies and ternary phase diagram revealed isopropyl myristate (IPM), Span 80, Tween 80 as Smix and Transcutol P as co-surfactant. IPM demonstrates excellent solubilizing properties facilitates higher drug loading, ensuring efficient delivery to the target site.,The optimized formulation consisting of 40 % IPM, 30 % of mixture of Tween80: Span80 (Smix) and 15 % Transcutol P provides with a nanometric size of 64.1 ± 5.13 nm and drug loading of 97.3 ± 5.83 %. The optimized formulation observed with no creaming and breakeing of NE and found thermodynamically stable during different stress conditions (temperatures of 4.0 °C and 45.0 °C) and physical thawing (-21.0 ± 0.50 °C to 20.0 ± 0.50 °C). The NE was then transformed into a nanoemulgel (NEG) using 1.5 % w/w Carbopol base and 0.1 % w/w glycyrrhizin. The ex vivo permeability studies showed significant enhancements in drug permeability with the GLY-based 5-FU-NEG formulation compared to pure 5-FU gel in excised pig skin upto1440 min in PBS 7.4 as receptor media. The IC50 values for Plain 5-FU gel, 5-FU-NEG, and GLY-based 5-FU-NEG were found to be 20 µg/mL, 1.1 µg/mL, and 0.1 µg/mL, respectively in B16F10 cell lines. The percentage intracellular uptake of GLY-5-FU-NEG and 5-FU-NEG was found to be 44.3 % and 53.6 %, respectively. GLY-based 5-FU-NEG formulation showed alterations in cell cycle distribution, in compared to 5-FU-NE gel. The overall findings suggest that the GLY-based 5-FU-NEG holds promise for improving anti-melanoma activity.

4.
Part Fibre Toxicol ; 20(1): 16, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088832

RESUMO

BACKGROUND: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17ß-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.


Assuntos
Nylons , Pneumonia , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Nylons/toxicidade , Microplásticos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Dilatação , Aerossóis e Gotículas Respiratórios , Pneumonia/induzido quimicamente , Pulmão , Inflamação/induzido quimicamente , Tamanho da Partícula , Líquido da Lavagem Broncoalveolar
5.
Chem Biodivers ; 20(5): e202300024, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017338

RESUMO

Candida infections are most prominent among fungal infections majorly target immunocompromised and hospitalized patients and cause significant morbidity and mortality. Candida albicans is the notorious and most prevalent among all pathogenic Candida strains. Its emerging resistance toward available antifungal agents making it hard to tackle and emerging as global healthcare emergency. Simultaneously, 1,2,3-triazole nucleus is a privileged scaffold that is gaining importance in antifungal drug development due to being a prominent bioactive linker and isostere of triazole based antifungal class core 1,2,4-triazole. Numerous reports have been updated in scientific literature in last few decades related to utilization of 1,2,3-triazole nucleus in antifungal drug development against Candida albicans. Present review will shed light on various preclinical studies focused on development of 1,2,3-triazole derivatives targeting Candida albicans along with brief highlight on clinical trials and newly approved drugs. Structure-activity relationship has been precisely discussed for each architect along with future perspective that will help medicinal chemists in design and development of potent antifungal agents for tackling infections derived from Candida albicans.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Triazóis/farmacologia , Desenvolvimento de Medicamentos
6.
AAPS PharmSciTech ; 24(8): 220, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914839

RESUMO

Psoriasis is an auto-immune condition with high keratinocyte hyperproliferation due to lower p53 and p22 levels. Tacrolimus, an immune suppressor, is considered one of the most effective drugs in suppressing psoriasis. Systematic administration of tacrolimus often leads to challenging side effects, namely increased infection risk, renal toxicity, neurological symptoms such as tremors and headaches, gastrointestinal disturbances, hypertension, skin-related problems, etc. To address this, a nanocarrier-based formulation of tacrolimus along with inclusion of hyaluronic acid was developed. The optimization and formulation of ethosomes via the ethanol injection technique were done based on the Box-Behnken experimental design. The results revealed hyaluronic acid-based tacrolimus ethosomes (HA-TAC-ETH) had nanometric vesicle size (315.7 ± 2.2 nm), polydispersity index (PDI) (0.472 ± 0.07), and high entrapment efficiency (88.3 ± 2.52%). The findings of drug release and skin permeation showed sustained drug release with increased dermal flux and enhancement ratio. The effectiveness of HA-TAC-ETH was confirmed in an imiquimod (5%)-prompted psoriasis model. The skin irritation score and Psoriasis Area and Severity Index (PASI) score indicated that HA-TAC-ETH gel has validated a decline in the entire factors (erythema, edema, and thickness) in the imiquimod-induced psoriasis model in contrast with TAC-ETH gel and TAC ointment. The fabricated HA-TAC-ETH opt gel proved to be safe and effective in in vivo studies and could be employed to treat psoriasis further.


Assuntos
Psoríase , Tacrolimo , Humanos , Tacrolimo/uso terapêutico , Ácido Hialurônico/farmacologia , Administração Cutânea , Imiquimode , Psoríase/tratamento farmacológico , Pele
7.
Chem Res Toxicol ; 35(9): 1541-1557, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36066868

RESUMO

Wood burning contributes to indoor and ambient particulate matter (PM) pollution and has been associated with increased morbidity and mortality. Here, we present an integrated methodology that allows to generate, sample, and characterize wood smoke derived from different moisture contents and representative combustion conditions using pine wood as a model. Flaming, smoldering, and incomplete combustion were assessed for low-moisture pine, whereas both low-moisture pine and high-moisture pine were investigated under flaming conditions. Real-time monitoring of carbon monoxide, volatile organic compounds, and aerosol number concentration/size in wood smoke was performed. The PM was size-fractionated, sampled, and characterized for elemental/organic carbon, organic functional groups, and inorganic elements. Bioactivity of PM was assessed by measuring the sterile alpha motif (SAM) pointed domain containing ETS (E-twenty-six) transcription factor (SPDEF) gene promoter activity in human embryonic kidney 293 (HEK-293T) cells, a biomarker for mucin gene expression. Findings showed that moisture content and combustion condition significantly affected the organic and inorganic elemental composition of PM0.1 as well as its bioactivity. Also, for a given moisture and combustion scenario, PM chemistry and bioactivity differed considerably with PM size. Importantly, PM0.1 from flaming combustion of low-moisture pine contained the highest abundance of the oxygenated saturated aliphatic functional group [H-C-O] and was also biologically most potent in stimulating SPDEF promoter activity, suggesting the role of organic compounds such as carbohydrates and sugar alcohols (that contain [H-C-O]) in driving mucus-related respiratory outcomes. Our platform enables further well-controlled parametric studies using a combination of in vitro and in vivo approaches to link wood burning parameters with acute and chronic inhalation health effects of wood smoke.


Assuntos
Poluentes Atmosféricos , Material Particulado , Fumaça , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carboidratos/análise , Monóxido de Carbono/análise , Monóxido de Carbono/toxicidade , Humanos , Mucinas/análise , Material Particulado/análise , Material Particulado/toxicidade , Fumaça/efeitos adversos , Fumaça/análise , Álcoois Açúcares/análise , Fatores de Transcrição , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade , Madeira/química
8.
Crit Rev Toxicol ; 52(3): 188-220, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35822508

RESUMO

"E-Cigarette (e-cig) Vaping-Associated Acute Lung Injury" (EVALI) has been linked to vitamin-E-acetate (VEA) and Δ-9-tetrahydrocannabinol (THC), due to their presence in patients' e-cigs and biological samples. Lacking standardized methodologies for patients' data collection and comprehensive physicochemical/toxicological studies using real-world-vapor exposures, very little data are available, thus the underlying pathophysiological mechanism of EVALI is still unknown. This review aims to provide a comprehensive and critical appraisal of existing literature on clinical/epidemiological features and physicochemical-toxicological characterization of vaping emissions associated with EVALI. The literature review of 161 medical case reports revealed that the predominant demographic pattern was healthy white male, adolescent, or young adult, vaping illicit/informal THC-containing e-cigs. The main histopathologic pattern consisted of diffuse alveolar damage with bilateral ground-glass-opacities at chest radiograph/CT, and increased number of macrophages or neutrophils and foamy-macrophages in the bronchoalveolar lavage. The chemical analysis of THC/VEA e-cig vapors showed a chemical difference between THC/VEA and the single THC or VEA. The chemical characterization of vapors from counterfeit THC-based e-cigs or in-house-prepared e-liquids using either cannabidiol (CBD), VEA, or medium-chain triglycerides (MCT), identified many toxicants, such as carbonyls, volatile organic compounds, terpenes, silicon compounds, hydrocarbons, heavy metals, pesticides and various industrial/manufacturing/automotive-related chemicals. There is very scarce published toxicological data on emissions from THC/VEA e-liquids. However, CBD, MCT, and VEA emissions exert varying degrees of cytotoxicity, inflammation, and lung damage, depending on puffing topography and cell line. Major knowledge gaps were identified, including the need for more systematic-standardized epidemiological surveys, comprehensive physicochemical characterization of real-world e-cig emissions, and mechanistic studies linking emission properties to specific toxicological outcomes.


Assuntos
Lesão Pulmonar Aguda , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Lesão Pulmonar Aguda/epidemiologia , Adolescente , Dronabinol/química , Humanos , Masculino , Vaping/efeitos adversos , Vitamina E , Adulto Jovem
9.
Environ Sci Technol ; 56(17): 12288-12297, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35973094

RESUMO

Despite mounting evidence of micro-nanoplastics (MNPs) in food and drinking water, little is known of the potential health risks of ingested MNPs, and nothing is known of their potential impact on nutrient digestion and absorption. We assessed the effects of environmentally relevant secondary MNPs generated by incineration of polyethylene (PE-I), on digestion and absorption of fat in a high fat food model using a 3-phase in vitro simulated digestion coupled with a tri-culture small intestinal epithelium model. The presence of 400 µg/mL PE-I increased fat digestion by 33% and increased fat absorption by 147 and 145% 1 and 2 h after exposure. Analysis of the PE-I lipid corona during digestion revealed predominantly triacylglycerols with enrichment of fatty acids in the small intestinal phase. Protein corona analysis showed enrichment of triacylglycerol lipase and depletion of ß-casein in the small intestinal phase. These findings suggest digestion of triacylglycerol by lipase on the surface of lipid-coated MNPs as a potential mechanism. Further studies are needed to investigate the mechanisms underlying the greater observed increase in fat absorption, to verify these results in an animal model, and to determine the MNP properties governing their effects on lipid digestion and absorption.


Assuntos
Lipólise , Microplásticos , Animais , Digestão , Incineração , Absorção Intestinal , Mucosa Intestinal/metabolismo , Lipase/metabolismo , Polietileno/metabolismo , Triglicerídeos/metabolismo
10.
Sensors (Basel) ; 22(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632192

RESUMO

Sensory feedback is critical in proprioception and balance to orchestrate muscles to perform targeted motion(s). Biofeedback plays a significant role in substituting such sensory data when sensory functions of an individual are reduced or lost such as neurological disorders including stroke causing loss of sensory and motor functions requires compensation of both motor and sensory functions. Biofeedback substitution can be in the form of several means: mechanical, electrical, chemical and/or combination. This study proposes a soft monolithic haptic biofeedback device prototyped and pilot tests were conducted with healthy participants that balance and proprioception of the wearer were improved with applied mechanical stimuli on the lower limb(s). The soft monolithic haptic biofeedback device has been developed and manufactured using fused deposition modelling (FDM) that employs soft and flexible materials with low elastic moduli. Experimental results of the pilot tests show that the soft haptic device can effectively improve the balance of the wearer as much as can provide substitute proprioceptive feedback which are critical elements in robotic rehabilitation.


Assuntos
Tecnologia Háptica , Propriocepção , Biorretroalimentação Psicológica/métodos , Humanos , Projetos Piloto , Equilíbrio Postural/fisiologia
11.
Part Fibre Toxicol ; 18(1): 33, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479598

RESUMO

BACKGROUND: Metal oxide nanoparticles (NPs) are increasingly used in many industrial and biomedical applications, hence their impact on occupational and public health has become a concern. In recent years, interest on the effect that exposure to NPs may exert on human reproduction has grown, however data are still scant. In the present work, we investigated whether different metal oxide NPs interfere with mouse cumulus cell-oocyte complex (COC) expansion. METHODS: Mouse COCs from pre-ovulatory follicles were cultured in vitro in the presence of various concentrations of two types of TiO2 NPs (JRC NM-103 and NM-104) and four types of ZnO NPs (JRC NM-110, NM-111, and in-house prepared uncoated and SiO2-coated NPs) and the organization of a muco-elastic extracellular matrix by cumulus cells during the process named cumulus expansion was investigated. RESULTS: We show that COC expansion was not affected by the presence of both types of TiO2 NPs at all tested doses, while ZnO NM-110 and NM-111 induced strong toxicity and inhibited COCs expansion at relatively low concentration. Medium conditioned by these NPs showed lower toxicity, suggesting that, beside ion release, inhibition of COC expansion also depends on NPs per se. To further elucidate this, we compared COC expansion in the presence of uncoated or SiO2-coated NPs. Differently from the uncoated NPs, SiO2-coated NPs underwent slower dissolution, were not internalized by the cells, and showed an overall lower toxicity. Gene expression analysis demonstrated that ZnO NPs, but not SiO2-coated ZnO NPs, affected the expression of genes fundamental for COC expansion. Dosimetry analysis revealed that the delivered-to-cell mass fractions for both NPs was very low. CONCLUSIONS: Altogether, these results suggest that chemical composition, dissolution, and cell internalization are all responsible for the adverse effects of the tested NPs and support the importance of a tailored, safer-by-design production of NPs to reduce toxicity.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Animais , Células do Cúmulo , Feminino , Nanopartículas Metálicas/toxicidade , Camundongos , Oócitos , Dióxido de Silício/toxicidade , Óxido de Zinco/toxicidade
12.
AAPS PharmSciTech ; 22(1): 24, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400035

RESUMO

The present study pursued the systematic development of a stable solid self-emulsifying drug delivery system (SMEDDS) of an atypical antipsychotic drug, aripiprazole (APZ), which exhibits poor aqueous solubility and undergoes extensive p-glycoprotein efflux and hepatic metabolism. Liquid SMEDDS excipients were selected on the basis of solubility studies, and the optimum ratio of surfactant/co-surfactant was determined using pseudo-ternary phase diagrams. The prepared formulations were subjected to in vitro characterization studies to facilitate the selection of optimum liquid SMEDD formulation containing 30% Labrafil® M 1944 CS, 46.7% Cremophor® EL and 23.3% PEG 400 which were further subjected to solidification using maltodextrin as a hydrophilic carrier. The optimized solid SMEDDS was extensively evaluated for stability under accelerated conditions, dissolution at various pH and pharmacokinetic profile. Solid-state attributes of the optimized solid SMEDDS indicated a marked reduction in crystallinity of APZ and uniform adsorption of liquid SMEDDS. Stability study of the solid SMEDDS demonstrated that the developed formulation retained its stability during the accelerated storage conditions. Both the optimized liquid and solid SMEDDS exhibited enhanced dissolution rate which was furthermore independent of the pH of the dissolution medium. Oral bioavailability studies in Sprague-Dawley rats confirmed quicker and greater extent of absorption with solid SMEDDS as evident from the significant reduction in Tmax in case of solid SMEDDS (0.83 ± 0.12 h) as compared with commercial tablet (3.33 ± 0.94 h). The results of the present investigation indicated the development of a stable solid SMEDDS formulation of APZ with enhanced dissolution and absorption attributes.


Assuntos
Aripiprazol/administração & dosagem , Sistemas de Liberação de Medicamentos , Administração Oral , Animais , Aripiprazol/química , Aripiprazol/farmacocinética , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Emulsões/química , Feminino , Concentração de Íons de Hidrogênio , Ratos , Ratos Sprague-Dawley
13.
Environ Sci Technol ; 54(4): 2389-2400, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31967798

RESUMO

Laser printers emit high levels of nanoparticles (PM0.1) during operation. Although it is well established that toners contain multiple engineered nanomaterials (ENMs), little is known about inhalation exposures to these nanoparticles and work practices in printing centers. In this report, we present a comprehensive inhalation exposure assessment of indoor microenvironments at six commercial printing centers in Singapore, the first such assessment outside of the United States, using real-time personal and stationary monitors, time-integrated instrumentation, and multiple analytical methods. Extensive presence of ENMs, including titanium dioxide, iron oxide, and silica, was detected in toners and in airborne particles collected from all six centers studied. We document high transient exposures to emitted nanoparticles (peaks of ∼500 000 particles/cm3, lung-deposited surface area of up to 220 µm2/cm3, and PM0.1 up to 16 µg/m3) with complex PM0.1 chemistry that included 40-60 wt % organic carbon, 10-15 wt % elemental carbon, and 14 wt % trace elements. We also record 271.6-474.9 pmol/mg of Environmental Protection Agency-priority polycyclic aromatic hydrocarbons. These findings highlight the potentially high occupational inhalation exposures to nanoparticles with complex compositions resulting from widespread usage of nano-enabled toners in the printing industry, as well as inadequate ENM-specific exposure control measures in these settings.


Assuntos
Nanopartículas , Exposição Ocupacional , Monitoramento Ambiental , Exposição por Inalação , Tamanho da Partícula , Impressão Tridimensional , Singapura , Estados Unidos
14.
Part Fibre Toxicol ; 17(1): 40, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787867

RESUMO

BACKGROUND: Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs. incinerated nano-enabled thermoplastic composites on two in vitro pulmonary models. Ultrafine particles released from thermally decomposed virgin polycarbonate or polyurethane, and their carbon nanotube (CNT)-enabled composites were collected and used for acute in vitro exposure to primary human small airway epithelial cell (pSAEC) and human bronchial epithelial cell (Beas-2B) models. Post-exposure, both cell lines were assessed for cytotoxicity, proliferative capacity, intracellular ROS generation, genotoxicity, and mitochondrial membrane potential. RESULTS: The treated Beas-2B cells demonstrated significant dose-dependent cellular responses, as well as parent matrix-dependent and CNT-dependent sensitivity. Cytotoxicity, enhancement in reactive oxygen species, and dissipation of ΔΨm caused by incinerated polycarbonate were significantly more potent than polyurethane analogues, and CNT filler enhanced the cellular responses compared to the incinerated parent particles. Such effects observed in Beas-2B were generally higher in magnitude compared to pSAEC at treatments examined, which was likely attributable to differences in respective lung cell types. CONCLUSIONS: Whilst the effect of the treatments on the distal respiratory airway epithelia remains limited in interpretation, the current in vitro respiratory bronchial epithelia model demonstrated profound sensitivity to the test particles at depositional doses relevant for occupational cohorts.


Assuntos
Poluentes Atmosféricos/toxicidade , Incineração , Nanotubos de Carbono/química , Material Particulado/toxicidade , Plásticos/toxicidade , Brônquios , Linhagem Celular , Dano ao DNA , Células Epiteliais , Estresse Oxidativo , Espécies Reativas de Oxigênio
15.
South Med J ; 112(10): 535-538, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31583414

RESUMO

OBJECTIVES: Anti-cyclic citrullinated peptide antibody (ACPA) has excellent specificity and prognostic value in patients with early rheumatoid arthritis (RA). The American College of Rheumatology included ACPA in their 2010 classification criteria for RA, but we hypothesize that primary care physicians (PCPs) underuse ACPA, even when clinical suspicion for RA is high. We aimed to describe their use of diagnostic testing in patients who were referred to a rheumatologist and eventually diagnosed as having RA. METHODS: In this retrospective cohort study, a systematic abstraction tool was used to review the medical records of patients seen between January 1, 2010 and June 15, 2014 in two rheumatology clinics: one private practice and one community health center associated with an academic medical center. For purposes of hypothesis generation, we compared the characteristics of patients with and without testing using unpaired t tests or Fisher exact tests. RESULTS: We identified 173 patients with RA referred from 141 different PCPs: 82.7% were women with a mean ± standard deviation age of 55.5 ± 18.6 years. ACPA and rheumatoid factor were ordered in 28.9% (95% confidence interval 22.6-36.2) and 41.0% (95% confidence interval 33.9-48.6) of patients, respectively. Imaging was underused. Almost half (45.7%, or 37/81) of the patients with documented symptom duration had a delay of at least 1 year before referral; however, ACPA utilization was not associated with the delay to treatment initiation. CONCLUSIONS: Most PCPs failed to order diagnostic tests for RA before referring a patient with polyarthritis who eventually received a diagnosis of RA. We also observed delays in diagnosis, with half of the patients waiting >1 year from symptom onset to diagnosis. These findings suggest educational efforts for PCPs should focus on emphasizing earlier diagnostic workups, especially ACPA, in patients suspected to have RA.


Assuntos
Artrite Reumatoide/diagnóstico , Autoanticorpos/imunologia , Fator Reumatoide/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Autoanticorpos/metabolismo , Biomarcadores/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fator Reumatoide/metabolismo
16.
Environ Sci Technol ; 51(9): 5222-5232, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28397486

RESUMO

Nano-enabled products are ultimately destined to reach end-of-life with an important fraction undergoing thermal degradation through waste incineration or accidental fires. Although previous studies have investigated the physicochemical properties of released lifecycle particulate matter (called LCPM) from thermal decomposition of nano-enabled thermoplastics, critical questions about the effect of nanofiller on the chemical composition of LCPM still persist. Here, we investigate the potential nanofiller effects on the profiles of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAHs) adsorbed on LCPM from thermal decomposition of nano-enabled thermoplastics. We found that nanofiller presence in thermoplastics significantly enhances not only the total PAH concentration in LCPM but most importantly also the high molecular weight (HMW, 4-6 ring) PAHs that are considerably more toxic than the low molecular weight (LMW, 2-3 ring) PAHs. This nano-specific effect was also confirmed during in vitro cellular toxicological evaluation of LCPM for the case of polyurethane thermoplastic enabled with carbon nanotubes (PU-CNT). LCPM from PU-CNT shows significantly higher cytotoxicity compared to PU which could be attributed to its higher HMW PAH concentration. These findings are crucial and make the case that nanofiller presence in thermoplastics can significantly affect the physicochemical and toxicological properties of LCPM released during thermal decomposition.


Assuntos
Nanotubos de Carbono , Hidrocarbonetos Policíclicos Aromáticos , Saúde Ambiental , Monitoramento Ambiental , Nanopartículas , Material Particulado
17.
Mitochondrion ; 74: 101826, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092248

RESUMO

Mitochondria, often referred to as the powerhouses of the cell, have emerged as promising targets for cancer therapy due to their pivotal roles in cell survival, apoptosis, and energy metabolism. This sojourn emphasizes the significance of mitochondria-targeted drug delivery systems in cancer therapeutics. The unique characteristics of cancer cell mitochondria, such as altered membrane potential and distinct lipid composition, offer an avenue for selective drug targeting. Several strategies have been explored to exploit these features, including the use of lipophilic cations, mitochondria-penetrating peptides, and nanocarriers tailored for mitochondrial delivery. Mitochondria-targeted drug delivery systems have demonstrated enhanced therapeutic efficacy and reduced systemic toxicity in preclinical models. Some of these systems have made a successful transition to clinical trials, illustrating their potential in real-world oncology settings. However, there remain challenges like intracellular barriers, potential off-target effects, and the complexity of tumor heterogeneity that must be addressed to fully harness the potential of mitochondria-targeted drug delivery systems. As research progresses, it is anticipated that innovative approaches and technologies will be developed to improve the specificity and efficacy of mitochondrial targeting, paving the way for more effective and safer cancer treatments in the future. This review serves as a comprehensive guide to the current state of mitochondria-targeted drug delivery systems for cancer, highlighting key strategies, clinical progress, and prospective avenues for future research.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Estudos Prospectivos , Mitocôndrias/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-38303531

RESUMO

Organelle-specific targeted drug delivery has emerged as a promising approach in the field of drug delivery and therapeutics. This innovative strategy involves the precise delivery of therapeutic agents to specific organelles within cells, such as the nucleus, mitochondria, endoplasmic reticulum, or lysosomes, with the aim of enhancing drug efficacy while minimizing offtarget effects. Despite its tremendous potential, organelle-specific drug delivery faces several key challenges. One major challenge is the development of delivery systems that can accurately navigate the complex intracellular environment and deliver drugs exclusively to the desired organelles. Achieving this level of precision demands advanced nanotechnology and biomaterials engineering. Furthermore, ensuring the safety and biocompatibility of these delivery systems is paramount. Recent advancements in this field include the development of nanocarriers, such as liposomes, nanoparticles, and dendrimers, designed to target specific organelles through ligandreceptor interactions or pH-responsive mechanisms. Additionally, advancements in molecular biology and genetic engineering have enabled the design of genetically encoded organellespecific drug delivery systems. The therapeutic implications of organelle-specific drug delivery are vast. This approach has the potential to revolutionize the treatment of diseases with organelle- specific pathologies, such as neurodegenerative disorders, cancer, and mitochondrial diseases. By precisely targeting the organelles involved in disease progression, the efficacy of therapies can be significantly improved while minimizing collateral damage to healthy tissues.

19.
Assay Drug Dev Technol ; 22(4): 203-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717194

RESUMO

The relentless pursuit of precision medicine has catalyzed the development of molecular and cellular tethered drug delivery systems, a burgeoning field that stands to redefine the paradigms of therapeutic delivery. This review encapsulates the cutting-edge advancements within this domain, emphasizing the engineering of molecular tethers and cellular vectors designed to ferry therapeutics directly to their target sites with unparalleled specificity and efficiency. By exploiting the unique biochemical signatures of disease states, these systems promise a substantial reduction in off-target effects and an enhancement in drug bioavailability, thereby mitigating the systemic side effects that are often associated with conventional drug therapies. Through a synthesis of recent research findings, this review highlights the innovative approaches being explored in the design and application of these tethered systems, ranging from nanotechnology-based solutions to genetically engineered cellular carriers. The potential of these systems to provide targeted therapy for a wide array of diseases, including cancer, autoimmune disorders, and neurological conditions, is thoroughly examined. This abstract aims to provide a succinct overview of the current state and future prospects of molecular and cellular tethered drug delivery systems in advancing the frontiers of precision medicine.


Assuntos
Sistemas de Liberação de Medicamentos , Humanos , Medicina de Precisão , Animais , Portadores de Fármacos/química , Nanotecnologia
20.
Mitochondrion ; 78: 101922, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897397

RESUMO

Mitochondrial disorders, stemming from mutations in mitochondrial DNA (mtDNA), present a significant therapeutic challenge due to their complex pathophysiology and broad spectrum of clinical manifestations. Traditional gene therapy approaches, primarily reliant on viral vectors, face obstacles such as potential immunogenicity, insertional mutagenesis, and the specificity of targeting mtDNA. This review delves into non-viral methods for mitochondrial gene delivery, emerging as a promising alternative to overcome these limitations. Focusing on lipid-based nanoparticles, polymer-based vectors, and mitochondrial-targeted peptides, the mechanisms of action, advantages, and current applications in treating mitochondrial diseases was well elucidated. Non-viral vectors offer several benefits, including reduced immunogenicity, enhanced safety profiles, and the flexibility to carry a wide range of genetic material. We examine case studies where these methods have been applied, highlighting their potential in correcting pathogenic mtDNA mutations and mitigating disease phenotypes. Despite their promise, challenges such as delivery efficiency, specificity, and long-term expression stability persist. The review underscores the need for ongoing research to refine these delivery systems carry a wide range of genetic material. We examine case studies where these methods settings. As we advance our understanding of mitochondrial biology and gene delivery technologies, non-viral methods hold the potential to revolutionize the treatment of mitochondrial disorders, offering hope for therapies that can precisely target and correct the underlying genetic defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA