RESUMO
Tilletia indica Mitra causes Karnal bunt (KB) in wheat by pathogenic dikaryophase. The present study is the first to provide the draft genomes of the dikaryon (PSWKBGD-3) and its two monosporidial lines (PSWKBGH-1 and 2) using Illumina and PacBio reads, their annotation and the comparative analyses among the three genomes by extracting polymorphic SSR markers. The trancriptome from infected wheat grains of the susceptible wheat cultivar WL711 at 24 h, 48h, and 7d after inoculation of PSWKBGH-1, 2 and PSWKBGD-3 were also isolated. Further, two transcriptome analyses were performed utilizing T. indica transcriptome to extract dikaryon genes responsible for pathogenesis, and wheat transcriptome to extract wheat genes affected by dikaryon involved in plant-pathogen interaction during progression of KB in wheat. A total of 54, 529, and 87 genes at 24hai, 48hai, and 7dai, respectively were upregulated in dikaryon stage while 21, 35, and 134 genes of T. indica at 24hai, 48hai, and 7dai, respectively, were activated only in dikaryon stage. While, a total of 23, 17, and 52 wheat genes at 24hai, 48hai, and 7dai, respectively were upregulated due to the presence of dikaryon stage only. The results obtained during this study have been compiled in a web resource called TiGeR ( http://backlin.cabgrid.res.in/tiger/ ), which is the first genomic resource for T. indica cataloguing genes, genomic and polymorphic SSRs of the three T. indica lines, wheat and T. indica DEGs as well as wheat genes affected by T. indica dikaryon along with the pathogenecity related proteins of T. indica dikaryon during incidence of KB at different time points. The present study would be helpful to understand the role of dikaryon in plant-pathogen interaction during progression of KB, which would be helpful to manage KB in wheat, and to develop KB-resistant wheat varieties.
Assuntos
Basidiomycota , Doenças das Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Perfilação da Expressão Gênica , Genoma Fúngico , Interações Hospedeiro-Patógeno/genéticaRESUMO
Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.
Assuntos
Basidiomycota , Triticum , Triticum/genética , Melhoramento Vegetal , Basidiomycota/genética , Genótipo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Resistência à Doença/genéticaRESUMO
The innovations and progress in genome editing/new breeding technologies have revolutionized research in the field of functional genomics and crop improvement. This revolution has expanded the horizons of agricultural research, presenting fresh possibilities for creating novel plant varieties equipped with desired traits that can effectively combat the challenges posed by climate change. However, the regulation and social acceptance of genome-edited crops still remain as major barriers. Only a few countries considered the site-directed nuclease 1 (SDN1) approach-based genome-edited plants under less or no regulation. Hence, the present review aims to comprise information on the research work conducted using SDN1 in crops by various genome editing tools. It also elucidates the promising candidate genes that can be used for editing and has listed the studies on non-transgenic crops developed through SDN1 either by Agrobacterium-mediated transformation or by ribo nucleoprotein (RNP) complex. The review also hoards the existing regulatory landscape of genome editing and provides an overview of globally commercialized genome-edited crops. These compilations will enable confidence in researchers and policymakers, across the globe, to recognize the full potential of this technology and reconsider the regulatory aspects associated with genome-edited crops. Furthermore, this compilation serves as a valuable resource for researchers embarking on the development of customized non-transgenic crops through the utilization of SDN1.
RESUMO
Abstract: Rice-wheat cropping system, intensively followed in Indo-Gangetic plains (IGP), played a prominent role in fulfilling the food grains demand of the increasing population of South Asia. In northern Indian plains, some practices such as intensive rice cultivation with traditional method for long-term have been associated with severe deterioration of natural resources, declining factor productivity, multiple nutrients deficiencies, depleting groundwater, labour scarcity and higher cost of cultivation, putting the agricultural sustainability in question. Varietal development, soil and water management, and adoption of resource conservation technologies in rice cultivation are the key interventions areas to address these challenges. The cultivation of lesser water requiring crops, replacing rice in light-textured soil and rainfed condition, should be encouraged through policy interventions. Direct seeding of short duration, high-yielding and stress tolerant rice varieties with water conservation technologies can be a successful approach to improve the input use efficiency in rice cultivation under medium-heavy-textured soils. Moreover, integrated approach of suitable cultivars for conservation agriculture, mechanized transplanting on zero-tilled/unpuddled field and need-based application of water, fertilizer and chemicals might be a successful approach for sustainable rice production system in the current scenario. In this review study, various challenges in productivity and sustainability of rice cultivation system and possible alternatives and solutions to overcome such challenges are discussed in details.
RESUMO
Wheat is the second most cultivated cereal crop in the world and is an important crop in India. Leaf (brown) rust, caused by Puccinia triticina, was the most prevalent among the three rusts found in all the wheat-growing areas of India, Bhutan, and Nepal during 2016 to 2019. Leaf rust samples from wheat crops in these countries were pathotyped using the wheat differential genotypes and binomial Indian system of nomenclature. To facilitate international communication, each pathotype identified was also tested using the North American differentials. A total of 33 pathotypes were identified from 1,086 samples, including three new pathotypes: 61R47 (162-5 = KHTPM) and 93R49 (49 = NHKTN) from India and 93R57 (20-1 = NHKTN) from Nepal. Two pathotypes, 121R60-1 (77-9/52 = MHTKL) and 121R63-1 (77-5 = THTTM), accounted for 79.46% of the population. Virulence on Lr19 was identified in 0.27% of the samples from Nepal only. The proportion of pathotype 121R60-1 (77-9 = MHTKL) increased to 57.55% during these years. Virulence was not observed on Lr9, Lr24, Lr25, Lr28, Lr32, Lr39, Lr45, and Lr47 in the population of the Indian subcontinent. Eighteen polymorphic simple sequence repeat (SSR) primer pairs tested on the isolates amplified 48 alleles with an average of 2.66 alleles per primer pair. Based on SSR genotyping, these pathotypes could be grouped into two clades with another two subclades each. Many of the Lr genes present in Indian wheat germplasm (Lr1, Lr3a, Lr10, Lr11, Lr14a, Lr15, Lr16, Lr17, Lr20, Lr23, and Lr26) were ineffective for a majority of pathotypes. Most of these varieties possessed a high degree of leaf rust resistance. The field resistance of wheat varieties could be attributed to the interaction of genes, unknown resistance, or adult plant resistance.
Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Doenças das Plantas , Puccinia , Triticum/genética , VirulênciaRESUMO
Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 35K Axiom Wheat Breeder's Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality filtered SNPs, that were distributed across the B (~ 50%), A (~ 39%), and D (~ 10%) genomes. The total genetic distance coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon's information index (I) = 0.648, expected heterozygosity (He) = 0.456 and unbiased expected heterozygosity (uHe) = 0.456. To the best of our knowledge, this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association studies and marker assisted selection in wheat breeding programs.
Assuntos
Triticum/genética , Triticum/metabolismo , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Melhoramento Vegetal/métodos , Poaceae/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
CRISPR technology has vividly increased its applications in last five years for genome editing in a wide range of organisms from bacteria to plants. It is mostly applied in the field of mammalian research. This emerging versatile tool can be utilized in crop improvement by targeting various traits to increase economic value and adaptability of the crop species under changing climate. In plants, Arabidopsis and rice are the most studied plant species in genome editing through CRISPR technology. Wheat is lagging behind in the utilization of CRISPR based genome modifications. The hexaploid, large genome size and the recalcitrant nature in terms of tissue culture are the major obstacles for CRISPR utilization in wheat. Recently, the IWGSC released the high quality of reference genome for wheat which will greatly accelerate the application of CRISPR-based genome engineering in wheat and helps to resolve the global issue of food security in coming decades. The exogenous DNA-free improved mutants with CRISPR technology having desired traits will increase the productivity under biotic and abiotic stress conditions. To address complex traits involving multigene, recently developed multiplex genome editing toolkits can be used. This is a first review of its kind in which the practical utilization and updates on CRISPR validation in wheat along with its future prospects for use of this technology in wheat improvement are comprehensively discussed. Thus, the compiled information will immensely benefit the researchers for utilization of CRISPR system in wheat improvement across the globe.
Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Triticum/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes de Plantas/genética , Engenharia Genética/métodos , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , Poaceae/genéticaRESUMO
The rising population entails enhancement in wheat productivity to ensure substantial food supply which often get hindered by various biotic and abiotic stresses. Lodging, due to rain and high velocity wind causes significant economic and yield losses in cereals. Hence, lodging is emerging as a major hurdle to achieve the required yield targets. Various morphological, biochemical, anatomical and genetic traits contribute to produce a plant competent enough to bear lodging stress. Hence, in this review, we intend to elaborate the cause and impact relationship of lodging and tried to link lodging tolerance traits to field practices to minimize the losses. Because of the complex nature of lodging phenomenon, it is still obscure to identify best correlated traits to screen genotype in breeding programmes. However, the genotypes with best correlated traits like plant height, culm wall thickness should be introduced/selected in breeding programmes to inculcate lodging tolerance in a high yielding variety as in recent era lodging tolerance is a key factor to enhance productivity and farmer's income as well.
RESUMO
Background Femoral-shaft fractures are among the most common fractures of the lower extremity in children. There are several different options for treating femoral-shaft fractures in children. Elastic stable intramedullary nailing (ESIN) has become the standard treatment for fractures of shaft of femur in children for reasons including mini-invasive surgery, no need for casting, early mobilization and discharge as well as growing concerns toward cost-effectiveness. Objective To demonstrate the effectiveness of intramedullary fixation of fracture shaft of femur in skeletally immature children using the titanium elastic intramedullary nails. Method Forty children who underwent fixation with titanium intramedullary nails because of fracture of shaft of femur (Winquist and Hansen type 1 and 2) were reviewed. There were 60% male and 40% female patients and mean follow-up was six months. Time of union, deformity at fracture site, limb length discrepancy, knee range of motion and complications were assessed. Result Average age of the patients was 5.17 years (range 3 to 10). All patients achieved complete healing at a mean 12.8 weeks (range 10 to 20 weeks). Average limb length discrepancy was -0.16 cm (range -1.0 to 1.1 cm) average knee range of motion was 137.55 degrees (range 118 to 152 degrees). Complications were recorded in 13 (31.7%) patients and included: Five malunion which did not show any deformity or functional impairment and eight superficial wound infections which were healed after removal of nail. All patients were active as their pre injury levels at six months follow up. Conclusion Elastic stable intramedullary nailing is the method of choice for the simple pediatrics fracture shaft of femur, as it is minimally invasive and shows good functional and cosmetic results. It allows short hospital stay and quick recovery from pain and is cast-free.
Assuntos
Pinos Ortopédicos , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Titânio , Criança , Pré-Escolar , Elasticidade , Feminino , Consolidação da Fratura , Humanos , Fixadores Internos , Masculino , Estudos Prospectivos , Resultado do TratamentoRESUMO
It is well known that the noble metal nanoparticles show active absorption in the visible region because of the existence of the unique feature known as surface plasmon resonance (SPR). Here we report the effect of plasmonic Au nanoparticles on the enhancement of the renewable hydrogen (H2) evolution through photocatalytic water splitting. The plasmonic Au/graphene/TiO2 photocatalyst was synthesized in two steps: first the graphene/TiO2 nanocomposites were developed by the hydrothermal decomposition process; then the Au was loaded by photodeposition. The plasmonic Au and the graphene as co-catalyst effectively prolong the recombination of the photogenerated charges. This plasmonic photocatalyst displayed enhanced photocatalytic H2 evolution for water splitting in the presence of methanol as a sacrificial reagent. The H2 evolution rate from the Au/graphene co-catalyst was about 9 times higher than that of a pure graphene catalyst. The optimal graphene content was found to be 1.0 wt %, giving a H2 evolution of 1.34 mmol (i.e., 26 µmolh(-1)), which exceeded the value of 0.56 mmol (i.e., 112 µmolh(-1)) observed in pure TiO2. This high photocatalytic H2 evolution activity results from the deposition of TiO2 on graphene sheets, which act as an electron acceptors to efficiently separate the photogenerated charge carriers. However, the Au loading enhanced the H2 evolution dramatically and achieved a maximum value of 12 mmol (i.e., 2.4 mmolh(-1)) with optimal loading of 2.0 wt% Au on graphene/TiO2 composites. The enhancement of H2 evolution in the presence of Au results from the SPR effect induced by visible light irradiation, which boosts the energy intensity of the trapped electron as well as active sites for photocatalytic activity.
RESUMO
Chlorella sorokiniana holds significant industrial relevance owing to its lipid profile. Consequently, the objective of this investigation was to enhance growth, lipid content, and photosynthetic pigment production through the application of UV-C irradiation. The growth parameters of microalgae demonstrated an increase in response to concentration. After 35 days of incubation, cells exposed to UV-C for 8 min produced the most biomass at 2.2 g/l. Additionally, the chlorophyll content demonstrated a comparable pattern, with the highest concentrations of chlorophyll a (4.99 mg/l), chlorophyll b (6.22 mg/l), and total chlorophyll (11.21 mg/l) observed in cells incubated for 35 days and exposed to UV-C for 8 min. The lipid profile, nevertheless, demonstrated minor fluctuations. Specifically, the relative abundance of frequently occurring lipid compounds was found to be greater in cells treated with UV-C compared to the control group, and the most significant increase was obtained in 15-day culture exposed to UV-C for 8 min. However, after 35 days of incubation, this abundance decreased in cells exposed to UV-C for more than 4 min. Additionally, the observation of specific lipid compounds presented solely in cells obtained from algal cultures treated with UV-C was made. Consequently, drawing from the results obtained in the current investigation, it is possible to deduce that UV-C can be utilised to augment the overall development and yield of significant metabolites in microalgae. Furthermore, these microalgae can be converted into single-cell bioreactors to facilitate the production of lipids utilised in a variety of applications, a process that could be refined to cater to industrial demands.
RESUMO
Plant pathogens are causing substantial economic losses and thus became a significant threat to global agriculture. Effective and timely detection methods are prerequisite for combating the damages caused by the plant pathogens. In the realm of plant pathogen detection, the isothermal amplification techniques, e.g., recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), have emerged as a fast, precise, and most sensitive alternative to conventional PCR but they often comprise high rates of non-specific amplification and operational complexity. In recent advancements, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease Cas systems, particularly Cas12, have emerged as powerful tools for highly sensitive, specific, and rapid pathogen detection. Exploiting the collateral activities of Cas12, which selectively cleaves single-stranded DNA (ssDNA), novel detection platforms have been developed. The mechanism employs the formation of a triple complex molecule comprising guide RNA, Cas12 enzyme, and the substrate target nucleotide sequence. Upon recognition of the target, Cas12 indiscriminately cleaves the DNA strand, leading to the release of fluorescence from the cleaved ssDNA reporter. Integration of isothermal amplification methods with CRISPR/Cas12 enables one-step detection assays, facilitating rapid pathogen identification within 30 min at a single temperature. This integrated RPA-CRISPR/Cas12a approach eliminates the need for RNA extraction and cDNA conversion, allowing direct use of crude plant sap as a template. With an affordable fluorescence visualization system, this portable method achieves 100-fold greater sensitivity than conventional techniques. This review summarizes recent advances in RPA-CRISPR/Cas12a for detecting plant pathogens, covering primer design, field-level portability, and enhanced sensitivity.
RESUMO
Abiotic stress causes abrupt increase in the expression of stress-associated proteins, which provide tolerance by modulating the defense mechanism of plants. Small heat shock proteins (sHSPs) and anti-oxidant enzymes are important for environmental stress tolerance of the plants. In this study, two full-length cDNAs encoding small heat shock protein (sHSP) and superoxide dismutase (SOD), designated as TasHSP and SODI were identified and characterized from C-306 (thermotolerant) and PBW343 (thermosusceptible) cultivars of wheat (Triticum aestivum L.). An alpha crystalline domain was observed in TasHSP and manganese/iron binding domain in case of SODI. Quantitative real-time PCR showed very high transcript level of TasHSP and SOD in C-306 compared to PBW343 at different stages of growth and against differential heat stress (HS). Under differential HS at milky-dough stage, the fold change in transcript of both TasHSP and SOD was observed maximum in C-306, compared to PBW343. Protein profiling and isoenzymes analysis showed the expression of several heat-stable proteins and prominent isoenzymes of SOD in C-306, compared to PBW343. Scanning electron microscopy (SEM) of starch granules showed globular, well-shaped and more numbers of endospermic cells in C-306, compared to defragmented, irregular shaped and shrunken granules in case of PBW343 under HS treatment (42 degrees C for 2 h). Diurnal change in soluble starch synthase (SSS) activity showed an increase in the activity during afternoon (35 degrees C), compared to morning (29 degrees C) and evening (32 degrees C) in both the cultivars. Under heat stress (42 degrees C for 2 h), a drastic decrease in the SSS activity was observed, due to the thermal denaturation of the enzyme. Thermotolerance capacity analyzed using cell membrane stability (CMS) showed significantly higher CMS in case of C-306, compared to PBW343 at different stages of growth. Findings suggest that abundance of TasHSP and SODI during milky-dough stage plays a very important role in starch granule biosynthesis. The mechanism may be further exploited to develop tolerant wheat cultivar with high quality seeds.
Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Amido/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Membrana Celular/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Temperatura Alta , Isoenzimas/metabolismo , Microscopia Eletrônica de Varredura , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Homologia de Sequência de Aminoácidos , Sintase do Amido/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Metal oxide catalysts are known to trigger C-H bond activation selectively, indicating their suitability for olefin epoxidation. Nano-structured Co3O4 supported on TiO2 was prepared for selective epoxidation of a number of olefins under optimized reaction conditions. An appropriate synthetic procedure yielded a catalytic material (Co-Ti (NP)HT) with desired crystal size and interface conditions. Incorporation of Co into the Ti matrix resulted in an enhancement in the specific surface of Ti-Co nanoparticles (77.93 m2 g-1). XPS measurements evaluated the surface cobalt atom concentration (5.77%) in Ti-Co(NP)HT, indicating more dispersion of cobalt oxide species. Catalytic application of the material, using various olefins (under optimized reaction conditions) shows higher conversion (>85%) in a 6-h time interval. The substrate : oxidant (H2O2) concentration in an optimized molar ratio of 1 : 2 shows high olefin conversion for the formation of olefin oxide. The reactivity of olefins was found to be in the order: cyclohexene > methylstyrene > styrene > chlorostyrene > p-nitrostyrene. A DFT model compared the HOMO-LUMO energies of styrene and its substituted forms. The reusability of Ti-Co (NP)HT tested up to four continuous cycles of batch operations indicates a negligible loss (0.25-0.30%) of catalytic activity.
RESUMO
Wheat is the staple food crop of global importance for its grain nutrient quality. Grain iron and zinc content of the wheat grain is an important quantitatively inherited trait that is influenced by the environmental factors such as drought and heat stress. Phenotypic evaluation of 295 advanced breeding lines from the wheat stress breeding program of IARI was carried out under timely sown irrigated (IR), restricted irrigated, and late-sown conditions at New Delhi during the cropping season of 2020-21, and grain iron (GFeC) and zinc (GZnC) contents were estimated from both control and treatments. A statistically significant increase in GFeC and GZnC was observed under stress conditions compared to that of the control. Genotyping was carried out with the SNPs from the 35K Axiom Breeder's array, and marker-trait association was identified by GWAS analysis. Of the 23 MTAs identified, seven were linked with GFeC and sixteen were linked with GZnC. In silico analysis revealed a few important transcripts involved in various plant metabolism, growth, and development activities such as auxin response factor, root UVB sensitive proteins, potassium transporter, glycosyl transferase, COBRA, and F-box-like domain. The identified MTAs can be used for molecular breeding after validation and also for rapid development of micronutrient-rich varieties of wheat to mitigate hidden hunger.
RESUMO
There is a significant yield reduction in the wheat crop as a result of different biotic and abiotic stresses, and changing climate, among them moisture deficit stress and leaf rust are the major ones affecting wheat worldwide. HD3086 is a high-yielding wheat variety that has been released for commercial cultivation under timely sown irrigated conditions in the Indo-Gangetic plains of India. Variety HD3086 provides a good, stable yield, and it is the choice of millions of farmers in India. It becomes susceptible to the most prevalent pathotypes 77-5 and 77-9 of Puccinia triticina (causing leaf rust) in the production environment and its potential yield cannot be realized under moisture deficit stress. The present study demonstrates the use of a marker-assisted back cross breeding approach to the successful transfer of leaf rust resistance gene Lr24 and QTLs linked to moisture deficit stress tolerance in the background of HD3086. The genotype HI1500 was used as a donor parent that possesses leaf rust-resistant gene Lr24, which confers resistance against the major pathotypes found in the production environment. It possesses inbuilt tolerance under abiotic stresses with superior quality traits. Foreground selection for gene Lr24 and moisture deficit stress tolerance QTLs linked to Canopy temperature (CT), Normal Differential Vegetation Index (NDVI) and Thousand Kernel Weight (TKW) in different generations of the backcrossing and selection. In BC2F2, foreground selection was carried out to identify homozygous lines based on the linked markers and were advanced following pedigree based phenotypic selection. The selected lines were evaluated against P. triticina pathotypes 77-5 and 77-9 under controlled conditions. Recurrent parent recovery of the selected lines ranged from 78-94%. The identified lines were evaluated for their tolerance to moisture stress under field conditions and their resistance to rust under artificial epiphytotic conditions for two years. In BC2F5 generation, eight positive lines for marker alleles were selected which showed resistance to leaf rust and recorded an improvement in component traits of moisture deficit stress tolerance such as CT, NDVI, TKW and yield compared to the recurrent parent HD3086. The derived line is named HD3471 and is nominated for national trials for testing and further release for commercial cultivation.
RESUMO
Mucogingival problems are developmental and acquired aberrations in the morphology, position, and/or the amount of gingiva surrounding teeth. According to an academic report by American Academy of Periodontology, mucogingival therapy should be advocated for gingival augmentation and to create adequate vestibular depth in areas with insufficient attached gingiva. This paper provides an overview on mucogingival surgical procedures from its inception to the current time.
Assuntos
Gengivoplastia/tendências , Vestibuloplastia/tendências , Gengiva/anormalidades , Gengiva/transplante , Doenças da Gengiva/cirurgia , Regeneração Tecidual Guiada Periodontal , Humanos , Retalhos CirúrgicosRESUMO
Salt stress adversely affects the global wheat production and productivity. To improve salinity tolerance of crops, identification of robust molecular markers is highly imperative for development of salt-tolerant cultivars to mimic yield losses under saline conditions. In this study, we mined 171 salt-responsive genes (including 10 miRNAs) from bread wheat genome using the sequence information of functionally validated salt-responsive rice genes. Salt-stress, tissue and developmental stage-specific expression analysis of RNA-seq datasets revealed the constitutive as well as the inductive response of salt-responsive genes in different tissues of wheat. Fifty-four genotypes were phenotyped for salt stress tolerance. The stress tolerance index of the genotypes ranged from 0.30 to 3.18. In order to understand the genetic diversity, candidate gene based SSRs (cg-SSRs) and MIR gene based SSRs (miR-SSRs) were mined from 171 members of salt-responsive genes of wheat and validated among the contrasting panels of 54 tolerant as well as susceptible wheat genotypes. Among 53 SSR markers screened, 10 cg-SSRs and 8 miR-SSRs were found to be polymorphic. Polymorphic information content between the wheat genotypes ranged from 0.07 to 0.67, indicating the extant of wide genetic variation among the salt tolerant and susceptible genotypes at the DNA level. The genetic diversity analysis based on the allelic data grouped the wheat genotypes into three separate clusters of which single group encompassing most of the salt susceptible genotypes and two of them containing salt tolerance and moderately salt tolerance wheat genotypes were in congruence with penotypic data. Our study showed that both salt-responsive genes and miRNAs based SSRs were more diverse and can be effectively used for diversity analysis. This study reports the first extensive survey on genome-wide analysis, identification, development and validation of salt-responsive cg-SSRs and miR-SSRs in wheat. The information generated in the present study on genetic divergence among genotypes having a differential response to salt will help in the selection of suitable lines as parents for developing salt tolerant cultivars in wheat.
Assuntos
Estudos de Associação Genética , Repetições de Microssatélites/genética , Cloreto de Sódio/farmacologia , Triticum/genética , Alelos , Pão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Filogenia , Polimorfismo Genético , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reprodutibilidade dos Testes , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Sementes/genética , Estresse Fisiológico/genética , Fatores de TempoRESUMO
ABSTRACT: This study was conducted to evaluate the efficacy of seven decontamination processes in reducing the pesticide mixture load of six insecticides (quinalphos, profenophos, ethion, lambda-cyhalothrin, imidacloprid, and acetamiprid) from chili (Capsicum annuum L.). In the control treatment, the pesticide residues were extracted without following any decontamination procedure. The extraction of the insecticides from chili was initiated after 48 h of pesticide mixture spray and was done using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. The quantitative analysis of four insecticides, namely quinalphos, profenophos, ethion, and lambda-cyhalothrin, was done by coupled gas chromatography-electron capture detection and that of imidacloprid and acetamiprid by high-performance liquid chromatography-UV detection. The results depicted reduction of pesticide residues in all the decontamination treatments compared with the control, although it varied for different insecticides. Solutions of 1 and 5% NaCl and 5% CH3COOH served as efficient decontaminants in removal of quinalphos, profenophos, ethion, and lambda-cyhalothrin residues from chili to ca. 90%, whereas for imidacloprid and acetamiprid there was a mild decontamination only (33.33 to 52.44%). The solutions of 5% NaHCO3 and 0.01% KMnO4 were effective only in removing lambda-cyhalothrin residues from the chili crop, but for all other pesticides the decontamination was not much pronounced.
Assuntos
Inseticidas , Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida de Alta Pressão , Descontaminação , Resíduos de Praguicidas/análise , Praguicidas/análiseRESUMO
The intercropping of legumes with cereals help to achieve sustainable intensification by their mutual complementarity at efficiently using radiation, nutrients, etc. Several studies indicated such beneficial effects on the other component crop however, little research has been conducted to quantify their effects on the subsequent crop in a cropping system. In this study, the effect of the legume intercropping on the entire cropping system, particularly the maize + legume-wheat system was studied. Four legumes intercropped to maize followed by wheat crop were studied for intensification measures such as wheat equivalent yield (WEY), land equivalent ratio (LER), sustainable value index (SVI), and economic returns. N saving effect of legumes on the subsequent wheat crop was quantified with two N levels. Maize + cowpea-wheat combination was the most productive and economic intercrop combination (LER = 1.71, SVI = 0.96) with an increase in net economic return (43.63%) with a B:C ratio of 1.94. An additional 25% N (37.5 kg ha-1) was saved in the wheat crop when the legume intercropping was undertaken with maize. The results suggest that intercropping is the key to diversification and reduces the risk of crop failures by enhancing land-use efficiency, soil fertility, and economic returns under weather vagaries. This will be beneficial to small and marginal farmers of many countries.