Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Pathog ; 18(11): e1010656, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374839

RESUMO

Pore-forming proteins (PFPs) comprise the largest single class of bacterial protein virulence factors and are expressed by many human and animal bacterial pathogens. Cells that are attacked by these virulence factors activate epithelial intrinsic cellular defenses (or INCEDs) to prevent the attendant cellular damage, cellular dysfunction, osmotic lysis, and organismal death. Several conserved PFP INCEDs have been identified using the nematode Caenorhabditis elegans and the nematicidal PFP Cry5B, including mitogen-activated protein kinase (MAPK) signaling pathways. Here we demonstrate that the gene nck-1, which has homologs from Drosophila to humans and links cell signaling with localized F-actin polymerization, is required for INCED against small-pore PFPs in C. elegans. Reduction/loss of nck-1 function results in C. elegans hypersensitivity to PFP attack, a hallmark of a gene required for INCEDs against PFPs. This requirement for nck-1-mediated INCED functions cell-autonomously in the intestine and is specific to PFPs but not to other tested stresses. Genetic interaction experiments indicate that nck-1-mediated INCED against PFP attack is independent of the major MAPK PFP INCED pathways. Proteomics and cell biological and genetic studies further indicate that nck-1 functions with F-actin cytoskeleton modifying genes like arp2/3, erm-1, and dbn-1 and that nck-1/arp2/3 promote pore repair at the membrane surface and protect against PFP attack independent of p38 MAPK. Consistent with these findings, PFP attack causes significant changes in the amount of actin cytoskeletal proteins and in total amounts of F-actin in the target tissue, the intestine. nck-1 mutant animals appear to have lower F-actin levels than wild-type C. elegans. Studies on nck-1 and other F-actin regulating proteins have uncovered a new and important role of this pathway and the actin cytoskeleton in PFP INCED and protecting an intestinal epithelium in vivo against PFP attack.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/microbiologia , Actinas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Virulência/metabolismo , Porinas/metabolismo , Citoesqueleto de Actina/metabolismo
2.
BMC Biol ; 14: 71, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576487

RESUMO

BACKGROUND: The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. RESULTS: The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. CONCLUSIONS: Cry6 proteins are members of the alpha helical pore-forming toxins - a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/toxicidade , Endotoxinas/química , Endotoxinas/toxicidade , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidade , Praguicidas/toxicidade , Proteínas Citotóxicas Formadoras de Poros/química , Homologia Estrutural de Proteína , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Caenorhabditis elegans/efeitos dos fármacos , Cristalografia por Raios X , Dissulfetos/metabolismo , Modelos Moleculares , Praguicidas/química , Conformação Proteica , Tripsina/metabolismo
3.
Blood ; 120(2): 404-14, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22611153

RESUMO

Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.


Assuntos
Plaquetas/metabolismo , Síndrome de Hermanski-Pudlak/sangue , Síndrome de Hermanski-Pudlak/genética , Megacariócitos/metabolismo , Proteínas de Transporte de Monossacarídeos/sangue , Proteínas de Transporte de Monossacarídeos/genética , Animais , Plaquetas/patologia , Proteínas de Transporte/sangue , Diferenciação Celular , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/sangue , Modelos Animais de Doenças , Endossomos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lectinas/sangue , Masculino , Megacariócitos/patologia , Melanócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Imunoeletrônica , Proteínas Mutantes/sangue , Proteínas Mutantes/genética , Proteínas Qa-SNARE/sangue , RNA Mensageiro/sangue , RNA Mensageiro/genética , Fatores de Transcrição/sangue
4.
Physiology (Bethesda) ; 27(2): 85-99, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505665

RESUMO

Vertebrate pigment cells in the eye and skin are useful models for cell types that use specialized endosomal trafficking pathways to partition cargo proteins to unique lysosome-related organelles such as melanosomes. This review describes current models of protein trafficking required for melanosome biogenesis in mammalian melanocytes.


Assuntos
Melanócitos/metabolismo , Melanossomas/metabolismo , Animais , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Melaninas/metabolismo , Transporte Proteico
5.
J Cell Biol ; 177(1): 115-25, 2007 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-17420293

RESUMO

Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p-Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p-Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p-Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.


Assuntos
Proteínas de Transporte/fisiologia , Endocitose , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Ceruloplasmina/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/análise , Ferro/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo
6.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886957

RESUMO

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.


Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades delta do Complexo de Proteínas Adaptadoras/genética , Proteínas do Tecido Nervoso/genética , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , Endossomos/genética , Humanos , Melanócitos/metabolismo , Melanossomas/genética , Transporte Proteico/genética
7.
Mol Biol Cell ; 17(2): 645-57, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16314390

RESUMO

Extracellular signal-regulated kinase (Erk) is widely recognized for its central role in cell proliferation and motility. Although previous work has shown that Erk is localized at endosomal compartments, no role for Erk in regulating endosomal trafficking has been demonstrated. Here, we report that Erk signaling regulates trafficking through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-regulated endosomal pathway. Inactivation of Erk induced by a variety of methods leads to a dramatic expansion of the Arf6 endosomal recycling compartment, and intracellular accumulation of cargo, such as class I major histocompatibility complex, within the expanded endosome. Treatment of cells with the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 reduces surface expression of MHCI without affecting its rate of endocytosis, suggesting that inactivation of Erk perturbs recycling. Furthermore, under conditions where Erk activity is inhibited, a large cohort of Erk, MEK, and the Erk scaffold kinase suppressor of Ras 1 accumulates at the Arf6 recycling compartment. The requirement for Erk was highly specific for this endocytic pathway, because its inhibition had no effect on trafficking of cargo of the classical clathrin-dependent pathway. These studies reveal a previously unappreciated link of Erk signaling to organelle dynamics and endosomal trafficking.


Assuntos
Clatrina/fisiologia , Endocitose/fisiologia , Endossomos/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Biomarcadores , Butadienos/farmacologia , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epistasia Genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Células HeLa , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Cinética , MAP Quinase Quinase 1/análise , Nitrilas/farmacologia , Proteínas Quinases/análise , Proteínas Quinases/metabolismo , Transdução de Sinais
8.
J Cell Biol ; 209(4): 563-77, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26008744

RESUMO

Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.


Assuntos
Endossomos/metabolismo , Melanossomas/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Animais , Endocitose , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Melanócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredutases/metabolismo , Transporte Proteico , Pigmentação da Pele
9.
PLoS One ; 8(1): e54938, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372794

RESUMO

Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endocitose , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos CD79/química , Antígenos CD79/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Invaginações Revestidas da Membrana Celular/ultraestrutura , Camundongos , Dados de Sequência Molecular , Ligação Proteica
10.
Mol Biol Cell ; 23(16): 3178-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22718909

RESUMO

Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine-based sorting signal in the pigment cell-specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1- and AP-3-favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Proteínas de Transporte/metabolismo , Lectinas/metabolismo , Melanossomas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Dipeptídeos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Melanócitos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Ligação Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico
11.
Mol Biol Cell ; 20(5): 1464-77, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19116314

RESUMO

Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes.


Assuntos
Melanossomas/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Motivos de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Glicosilação , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Pigmentos Biológicos/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
12.
Traffic ; 8(10): 1375-84, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17645432

RESUMO

The Saccharomyces cerevisiae high-affinity copper transporter, Ctr1p, mediates cellular uptake of Cu(I). We report that when copper (50 microm CuSO(4)) is added to the growth medium of copper-starved cells, Ctr1p is rapidly internalized by endocytosis, delivered to the lumen of the lysosome-like vacuole and slowly degraded by vacuolar proteases. Through analysis of the trafficking and degradation of Ctr1p mutants, two lysine residues in the C-terminal cytoplasmic tail of Ctr1p, Lys340 and Lys345, were found to be critical for copper-dependent endocytosis and degradation. In response to copper addition, Ctr1p was found to be ubiquitylated and a mutation in the Rsp5 ubiquitin ligase largely abolished ubiquitylation, endocytosis and degradation. In a strain lacking the Rsp5p accessory factors Bul1p and Bul2p, endocytosis and degradation of Ctr1p-green fluorescent protein were substantially diminished. Surprisingly, a Ctr1p mutant that lacks Lys340 and Lys345 was still ubiquitylated in a copper-dependent manner, indicating that ubiquitylation of Ctr1p on other sites is insufficient to drive copper-dependent endocytosis and degradation. This study demonstrates that copper regulates turnover of Ctr1p by stimulating Rsp5p-dependent endocytosis and degradation of Ctr1p in the vacuole.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/fisiologia , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Vacúolos/metabolismo , Transportador de Cobre 1 , Complexos Endossomais de Distribuição Requeridos para Transporte , Transporte Proteico/fisiologia , Vacúolos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA