Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Dev Cell ; 9(3): 327-38, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16139224

RESUMO

Myc family transcription factors are destabilized by phosphorylation of a conserved amino-terminal GSK-3beta motif. In proliferating cerebellar granule neuron precursors (CGNPs), Sonic hedgehog signaling induces N-myc expression, and N-myc protein is stabilized by insulin-like growth factor-mediated suppression of GSK-3beta. N-myc phosphorylation-mediated degradation is a prerequisite for CGNP growth arrest and differentiation. We investigated whether N-myc phosphorylation and turnover are thus linked to cell cycle exit in primary mouse CGNP cultures and the developing cerebellum. We report that phosphorylation-induced turnover of endogenous N-myc protein in CGNPs increases during mitosis, due to increased priming phosphorylation of N-myc for GSK-3beta. The priming phosphorylation requires the Cdk1 complex, whose cyclin subunits are indirect Sonic hedgehog targets. These findings provide a mechanism for promoting growth arrest in the final cycle of neural precursor proliferation competency, or for resetting the cell cycle in the G1 phase, by destabilizing N-myc in mitosis.


Assuntos
Proteína Quinase CDC2/fisiologia , Neuroblastoma/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Cerebelo/citologia , Cerebelo/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Ciclina B1 , Fase G1 , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Mitose , Neurônios/ultraestrutura , Monoéster Fosfórico Hidrolases/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética
2.
Cell ; 129(6): 1065-79, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17574021

RESUMO

The karyotypic chaos exhibited by human epithelial cancers complicates efforts to identify mutations critical for malignant transformation. Here we integrate complementary genomic approaches to identify human oncogenes. We show that activation of the ERK and phosphatidylinositol 3-kinase (PI3K) signaling pathways cooperate to transform human cells. Using a library of activated kinases, we identify several kinases that replace PI3K signaling and render cells tumorigenic. Whole genome structural analyses reveal that one of these kinases, IKBKE (IKKepsilon), is amplified and overexpressed in breast cancer cell lines and patient-derived tumors. Suppression of IKKepsilon expression in breast cancer cell lines that harbor IKBKE amplifications induces cell death. IKKepsilon activates the nuclear factor-kappaB (NF-kappaB) pathway in both cell lines and breast cancers. These observations suggest a mechanism for NF-kappaB activation in breast cancer, implicate the NF-kappaB pathway as a downstream mediator of PI3K, and provide a framework for integrated genomic approaches in oncogene discovery.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Genômica , Quinase I-kappa B/genética , Alelos , Linhagem Celular , Transformação Celular Neoplásica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Biblioteca Gênica , Genoma , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA