Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608656

RESUMO

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Assuntos
Genoma Humano , Humanos , Europa (Continente) , Variação Genética , Países Escandinavos e Nórdicos , Reino Unido , População Branca/genética , População Branca/história , Migração Humana
2.
Cell ; 181(5): 1131-1145.e21, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32386546

RESUMO

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.


Assuntos
Antropologia/métodos , DNA Antigo/análise , Fluxo Gênico/genética , América Central , DNA Mitocondrial/genética , Fluxo Gênico/fisiologia , Genética Populacional/métodos , Haplótipos , Humanos , Análise de Sequência de DNA , América do Sul
3.
Cell ; 175(5): 1185-1197.e22, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415837

RESUMO

We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least ∼9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by ∼4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions.


Assuntos
Genética Populacional/história , Genoma Humano , América Central , DNA Antigo/análise , DNA Mitocondrial/genética , Fluxo Gênico , História Antiga , Humanos , Modelos Teóricos , América do Sul
4.
Cell ; 171(1): 59-71.e21, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938123

RESUMO

We assembled genome-wide data from 16 prehistoric Africans. We show that the anciently divergent lineage that comprises the primary ancestry of the southern African San had a wider distribution in the past, contributing approximately two-thirds of the ancestry of Malawi hunter-gatherers ∼8,100-2,500 years ago and approximately one-third of the ancestry of Tanzanian hunter-gatherers ∼1,400 years ago. We document how the spread of farmers from western Africa involved complete replacement of local hunter-gatherers in some regions, and we track the spread of herders by showing that the population of a ∼3,100-year-old pastoralist from Tanzania contributed ancestry to people from northeastern to southern Africa, including a ∼1,200-year-old southern African pastoralist. The deepest diversifications of African lineages were complex, involving either repeated gene flow among geographically disparate groups or a lineage more deeply diverging than that of the San contributing more to some western African populations than to others. We finally leverage ancient genomes to document episodes of natural selection in southern African populations. PAPERCLIP.


Assuntos
População Negra/genética , Genoma Humano , África , Osso e Ossos/química , DNA Antigo/análise , Feminino , Fósseis , Genética Médica , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Estilo de Vida , Masculino
5.
Nature ; 590(7845): 229-237, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568824

RESUMO

New finds in the palaeoanthropological and genomic records have changed our view of the origins of modern human ancestry. Here we review our current understanding of how the ancestry of modern humans around the globe can be traced into the deep past, and which ancestors it passes through during our journey back in time. We identify three key phases that are surrounded by major questions, and which will be at the frontiers of future research. The most recent phase comprises the worldwide expansion of modern humans between 40 and 60 thousand years ago (ka) and their last known contacts with archaic groups such as Neanderthals and Denisovans. The second phase is associated with a broadly construed African origin of modern human diversity between 60 and 300 ka. The oldest phase comprises the complex separation of modern human ancestors from archaic human groups from 0.3 to 1 million years ago. We argue that no specific point in time can currently be identified at which modern human ancestry was confined to a limited birthplace, and that patterns of the first appearance of anatomical or behavioural traits that are used to define Homo sapiens are consistent with a range of evolutionary histories.


Assuntos
Migração Humana/história , Linhagem , África/etnologia , Animais , Fósseis , Fluxo Gênico/genética , História Antiga , Humanos , Homem de Neandertal/genética
6.
Nature ; 591(7849): 265-269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33597750

RESUMO

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Assuntos
DNA Antigo/análise , Evolução Molecular , Genoma Mitocondrial/genética , Genômica , Mamutes/genética , Filogenia , Aclimatação/genética , Alelos , Animais , Teorema de Bayes , DNA Antigo/isolamento & purificação , Elefantes/genética , Europa (Continente) , Feminino , Fósseis , Variação Genética/genética , Cadeias de Markov , Dente Molar , América do Norte , Datação Radiométrica , Sibéria , Fatores de Tempo
7.
Nature ; 592(7853): 253-257, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828320

RESUMO

Modern humans appeared in Europe by at least 45,000 years ago1-5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.


Assuntos
DNA Antigo/análise , Genoma Humano/genética , Homem de Neandertal/genética , Alelos , América/etnologia , Animais , Arqueologia , Bulgária/etnologia , Cavernas , Ásia Oriental/etnologia , Feminino , História Antiga , Humanos , Masculino , Filogenia
8.
Nature ; 570(7760): 236-240, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168094

RESUMO

Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.


Assuntos
Migração Humana/história , Inuíte/classificação , Inuíte/genética , Filogenia , Filogeografia , África , Alaska , Alelos , Regiões Árticas , Sudeste Asiático , Canadá , Europa (Continente) , Genoma Humano/genética , Haplótipos , História Antiga , Humanos , Análise de Componente Principal , Sibéria/etnologia
9.
Nature ; 555(7698): 652-656, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562232

RESUMO

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.


Assuntos
Genoma/genética , Homem de Neandertal/classificação , Homem de Neandertal/genética , Filogenia , África/etnologia , Animais , Osso e Ossos , DNA Antigo/análise , Europa (Continente)/etnologia , Feminino , Fluxo Gênico , Genética Populacional , Genômica , Humanos , Ácido Hipocloroso , Masculino , Sibéria/etnologia , Dente
10.
Proc Natl Acad Sci U S A ; 117(26): 15132-15136, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546518

RESUMO

We sequenced the genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, to 27-fold genomic coverage. We show that this Neandertal was a female and that she was more related to Neandertals in western Eurasia [Prüfer et al., Science 358, 655-658 (2017); Hajdinjak et al., Nature 555, 652-656 (2018)] than to Neandertals who lived earlier in Denisova Cave [Prüfer et al., Nature 505, 43-49 (2014)], which is located about 100 km away. About 12.9% of the Chagyrskaya genome is spanned by homozygous regions that are between 2.5 and 10 centiMorgans (cM) long. This is consistent with the fact that Siberian Neandertals lived in relatively isolated populations of less than 60 individuals. In contrast, a Neandertal from Europe, a Denisovan from the Altai Mountains, and ancient modern humans seem to have lived in populations of larger sizes. The availability of three Neandertal genomes of high quality allows a view of genetic features that were unique to Neandertals and that are likely to have been at high frequency among them. We find that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino-acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in Neandertals.


Assuntos
Genoma , Homem de Neandertal/genética , Animais , Evolução Biológica , Feminino , Fósseis , Regulação da Expressão Gênica , Variação Genética , Humanos , Endogamia , Densidade Demográfica , Federação Russa
11.
Mol Biol Evol ; 38(9): 3497-3511, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34129037

RESUMO

Ancient genomes anchor genealogies in directly observed historical genetic variation and contextualize ancestral lineages with archaeological insights into their geography and cultural associations. However, the majority of ancient genomes are of lower coverage and cannot be directly built into genealogies. Here, we present a fast and scalable method, Colate, the first approach for inferring ancestral relationships through time between low-coverage genomes without requiring phasing or imputation. Our approach leverages sharing patterns of mutations dated using a genealogy to infer coalescence rates. For deeply sequenced ancient genomes, we additionally introduce an extension of the Relate algorithm for joint inference of genealogies incorporating such genomes. Application to 278 present-day and 430 ancient DNA samples of >0.5x mean coverage allows us to identify dynamic population structure and directional gene flow between early farmer and European hunter-gatherer groups. We further show that the previously reported, but still unexplained, increase in the TCC/TTC mutation rate, which is strongest in West Eurasia today, was already present at similar strength and widespread in the Late Glacial Period ~10k-15k years ago, but is not observed in samples >30k years old. It is strongest in Neolithic farmers, and highly correlated with recent coalescence rates between other genomes and a 10,000-year-old Anatolian hunter-gatherer. This suggests gene-flow among ancient peoples postdating the last glacial maximum as widespread and localizes the driver of this mutational signal in both time and geography in that region. Our approach should be widely applicable in future for addressing other evolutionary questions, and in other species.


Assuntos
DNA Antigo , Genoma , Fluxo Gênico , Genética Populacional , Geografia , História Antiga , Dinâmica Populacional
12.
Nature ; 538(7626): 510-513, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27698418

RESUMO

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Genômica , Migração Humana/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Feminino , Genética Populacional , História Antiga , Humanos , Masculino , Nova Guiné/etnologia , Polinésia/etnologia , Tonga , Vanuatu
13.
Nature ; 534(7606): 200-5, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27135931

RESUMO

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.


Assuntos
Camada de Gelo , População Branca/genética , População Branca/história , Animais , Evolução Biológica , DNA/análise , DNA/genética , DNA/isolamento & purificação , Europa (Continente) , Feminino , Efeito Fundador , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Masculino , Oriente Médio , Homem de Neandertal/genética , Filogenia , Dinâmica Populacional , Seleção Genética , Análise de Sequência de DNA , Fatores de Tempo
14.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654912

RESUMO

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , Taxa de Mutação , Filogenia , Grupos Raciais/genética , Animais , Austrália , População Negra/genética , Conjuntos de Dados como Assunto , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Homem de Neandertal/genética , Nova Guiné , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
15.
Annu Rev Genomics Hum Genet ; 19: 381-404, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29709204

RESUMO

The first decade of ancient genomics has revolutionized the study of human prehistory and evolution. We review new insights based on prehistoric modern human genomes, including greatly increased resolution of the timing and structure of the out-of-Africa expansion, the diversification of present-day non-African populations, and the earliest expansions of those populations into Eurasia and America. Prehistoric genomes now document population transformations on every inhabited continent-in particular the effect of agricultural expansions in Africa, Europe, and Oceania-and record a history of natural selection that shapes present-day phenotypic diversity. Despite these advances, much remains unknown, in particular about the genomic histories of Asia (the most populous continent) and Africa (the continent that contains the most genetic diversity). Ancient genomes from these and other regions, integrated with a growing understanding of the genomic basis of human phenotypic diversity, will be in focus during the next decade of research in the field.


Assuntos
Genoma Humano , Hominidae/genética , Animais , Evolução Biológica , Migração Humana , Humanos
16.
Nature ; 525(7567): 104-8, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26196601

RESUMO

Genetic studies have consistently indicated a single common origin of Native American groups from Central and South America. However, some morphological studies have suggested a more complex picture, whereby the northeast Asian affinities of present-day Native Americans contrast with a distinctive morphology seen in some of the earliest American skeletons, which share traits with present-day Australasians (indigenous groups in Australia, Melanesia, and island Southeast Asia). Here we analyse genome-wide data to show that some Amazonian Native Americans descend partly from a Native American founding population that carried ancestry more closely related to indigenous Australians, New Guineans and Andaman Islanders than to any present-day Eurasians or Native Americans. This signature is not present to the same extent, or at all, in present-day Northern and Central Americans or in a ∼12,600-year-old Clovis-associated genome, suggesting a more diverse set of founding populations of the Americas than previously accepted.


Assuntos
Indígenas Centro-Americanos/genética , Indígenas Sul-Americanos/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Austrália/etnologia , América Central/etnologia , Frequência do Gene/genética , Genoma Humano/genética , Genótipo , Humanos , Indígenas Norte-Americanos/genética , Nova Guiné/etnologia , Filogeografia , América do Sul/etnologia
17.
Nature ; 524(7564): 216-9, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26098372

RESUMO

Neanderthals are thought to have disappeared in Europe approximately 39,000-41,000 years ago but they have contributed 1-3% of the DNA of present-day people in Eurasia. Here we analyse DNA from a 37,000-42,000-year-old modern human from Pestera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of 6-9% of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.


Assuntos
Fósseis , Hibridização Genética/genética , Homem de Neandertal/genética , Filogenia , Alelos , Animais , Povo Asiático/genética , Ásia Oriental , Genoma Humano/genética , Humanos , Indígenas Norte-Americanos/genética , Masculino , Romênia , Análise de Sequência de DNA , Fatores de Tempo , População Branca/genética
18.
Nature ; 505(7481): 87-91, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24256729

RESUMO

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Indígenas Norte-Americanos/etnologia , Indígenas Norte-Americanos/genética , Filogenia , População Branca/genética , Animais , Ásia/etnologia , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração , Fluxo Gênico/genética , Genoma Mitocondrial/genética , Haplótipos/genética , Humanos , Indígenas Norte-Americanos/classificação , Masculino , Filogeografia , Sibéria/etnologia , Esqueleto
19.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24522598

RESUMO

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Assuntos
Genoma Humano/genética , Indígenas Norte-Americanos/genética , Filogenia , Arqueologia , Ásia/etnologia , Osso e Ossos , Sepultamento , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração/história , Europa (Continente)/etnologia , Fluxo Gênico/genética , Haplótipos/genética , História Antiga , Humanos , Lactente , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Montana , Dinâmica Populacional , Datação Radiométrica
20.
Proc Natl Acad Sci U S A ; 112(38): 11917-22, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351665

RESUMO

The consequences of the Neolithic transition in Europe--one of the most important cultural changes in human prehistory--is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter-gatherers. The proportion of hunter-gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people.


Assuntos
DNA/genética , Fazendeiros/história , Genoma , Pool Gênico , Geografia , História Antiga , Humanos , Dinâmica Populacional , Análise de Componente Principal , Análise de Sequência de DNA , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA