Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Mol Life Sci ; 79(3): 149, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35199227

RESUMO

The in vitro generation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC) is of great importance for cardiac disease modeling, drug-testing applications and for regenerative medicine. Despite the development of various cultivation strategies, a sufficiently high degree of maturation is still a decisive limiting factor for the successful application of these cardiac cells. The maturation process includes, among others, the proper formation of sarcomere structures, mediating the contraction of cardiomyocytes. To precisely monitor the maturation of the contractile machinery, we have established an imaging-based strategy that allows quantitative evaluation of important parameters, defining the quality of the sarcomere network. iPSC-derived cardiomyocytes were subjected to different culture conditions to improve sarcomere formation, including prolonged cultivation time and micro patterned surfaces. Fluorescent images of α-actinin were acquired using super-resolution microscopy. Subsequently, we determined cell morphology, sarcomere density, filament alignment, z-Disc thickness and sarcomere length of iPSC-derived cardiomyocytes. Cells from adult and neonatal heart tissue served as control. Our image analysis revealed a profound effect on sarcomere content and filament orientation when iPSC-derived cardiomyocytes were cultured on structured, line-shaped surfaces. Similarly, prolonged cultivation time had a beneficial effect on the structural maturation, leading to a more adult-like phenotype. Automatic evaluation of the sarcomere filaments by machine learning validated our data. Moreover, we successfully transferred this approach to skeletal muscle cells, showing an improved sarcomere formation cells over different differentiation periods. Overall, our image-based workflow can be used as a straight-forward tool to quantitatively estimate the structural maturation of contractile cells. As such, it can support the establishment of novel differentiation protocols to enhance sarcomere formation and maturity.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sarcômeros/metabolismo , Actinina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Aprendizado de Máquina , Camundongos , Microscopia de Fluorescência/métodos , Músculo Esquelético/citologia , Miocárdio/citologia , Fenótipo , RNA/genética , RNA/isolamento & purificação
2.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012110

RESUMO

Ventricular arrhythmias associated with myocardial infarction (MI) have a significant impact on mortality in patients following heart attack. Therefore, targeted reduction of arrhythmia represents a therapeutic approach for the prevention and treatment of severe events after infarction. Recent research transplanting mesenchymal stem cells (MSC) showed their potential in MI therapy. Our study aimed to investigate the effects of MSC injection on post-infarction arrhythmia. We used our murine double infarction model, which we previously established, to more closely mimic the clinical situation and intramyocardially injected hypoxic pre-conditioned murine MSC to the infarction border. Thereafter, various types of arrhythmias were recorded and analyzed. We observed a homogenous distribution of all types of arrhythmias after the first infarction, without any significant differences between the groups. Yet, MSC therapy after double infarction led to a highly significant reduction in simple and complex arrhythmias. Moreover, RNA-sequencing of samples from stem cell treated mice after re-infarction demonstrated a significant decline in most arrhythmias with reduced inflammatory pathways. Additionally, following stem-cell therapy we found numerous highly expressed genes to be either linked to lowering the risk of heart failure, cardiomyopathy or sudden cardiac death. Moreover, genes known to be associated with arrhythmogenesis and key mutations underlying arrhythmias were downregulated. In summary, our stem-cell therapy led to a reduction in cardiac arrhythmias after MI and showed a downregulation of already established inflammatory pathways. Furthermore, our study reveals gene regulation pathways that have a potentially direct influence on arrhythmogenesis after myocardial infarction.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/terapia , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia
3.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206051

RESUMO

Tumors arising in the context of Lynch Syndrome or constitutional mismatch repair deficiency are hypermutated and have a good response towards immune-checkpoint inhibitors (ICIs), including α-PD-L1 antibodies. However, in most cases, resistance mechanisms evolve. To improve outcomes and prevent resistance development, combination approaches are warranted. Herein, we applied a combined regimen with an α-PD-L1 antibody and gemcitabine in a preclinical tumor model to activate endogenous antitumor immune responses. Mlh1-/- mice with established gastrointestinal tumors received the α-PD-L1 antibody (clone 6E11; 2.5 mg/kg bw, i.v., q2wx3) and gemcitabine (100 mg/kg bw, i.p., q4wx3) in mono- or combination therapy. Survival and tumor growth were recorded. Immunological changes in the blood were routinely examined via multi-color flow cytometry and complemented by ex vivo frameshift mutation analysis to identify alterations in Mlh1-/--tumor-associated target genes. The combined therapy of α-PD-L1 and gemcitabine prolonged median overall survival of Mlh1-/- mice from four weeks in the untreated control group to 12 weeks, accompanied by therapy-induced tumor growth inhibition, as measured by [18F]-FDG PET/CT. Plasma cytokine levels of IL13, TNFα, and MIP1ß were increased and also higher than in mice receiving either monotherapy. Circulating splenic and intratumoral myeloid-derived suppressor cells (MDSCs), as well as M2 macrophages, were markedly reduced. Besides, residual tumor specimens from combi-treated mice had increased numbers of infiltrating cytotoxic T-cells. Frameshift mutations in APC, Tmem60, and Casc3 were no longer detectable upon treatment, likely because of the successful eradication of single mutated cell clones. By contrast, novel mutations appeared. Collectively, we herein confirm the safe application of combined chemo-immunotherapy by long-term tumor growth control to prevent the development of resistance mechanisms.


Assuntos
Antígeno B7-H1/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Proteína 1 Homóloga a MutL/genética , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Quimiocina CCL4/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/sangue , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Reparo de Erro de Pareamento de DNA/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-13/sangue , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Células Supressoras Mieloides , Síndromes Neoplásicas Hereditárias/sangue , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Fator de Necrose Tumoral alfa/sangue , Gencitabina
4.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316650

RESUMO

The maturation of iPSC-derived cardiomyocytes is still a critical point for their application in cardiovascular research as well as for their clinical use. Although multiple differentiation protocols have been established, researchers failed to generate fully mature cardiomyocytes in vitro possessing identical phenotype-related and functional properties as their native adult counterparts. Besides electrophysiological and metabolic changes, the establishment of a well structured sarcomere network is important for the development of a mature cardiac phenotype. Here, we present a super resolution-based approach to quantitatively evaluate the structural maturation of iPSC-derived cardiomyocytes. Fluorescence labelling of the α-actinin cytoskeleton and subsequent visualization by photoactivated localization microscopy allows the acquisition of highly resolved images for measuring sarcomere length and z-disc thickness. Our image analysis revealed that iPSC and neonatal cardiomyocyte share high similarity with respect to their sarcomere organization, however, contraction capacity was inferior in iPSC-derived cardiac cells, indicating an early maturation level. Moreover, we demonstrate that this imaging approach can be used as a tool to monitor cardiomyocyte integrity, helping to optimize iPSC differentiation as well as somatic cell direct-reprogramming strategies.


Assuntos
Miócitos Cardíacos/citologia , Sarcômeros/metabolismo , Imagem Individual de Molécula/métodos , Actinas/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Fenótipo , Sarcômeros/ultraestrutura
5.
Cells Tissues Organs ; 206(1-2): 35-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30630170

RESUMO

In-depth knowledge of the mechanisms induced by early postischemic cardiac endogenous mesenchymal stem cells (MSCs) in the acutely ischemic heart could advance our understanding of cardiac regeneration. Herein, we aimed to identify, isolate, and initially characterize the origin, kinetics and fate of cardiac MSCs. This was facilitated by in vivo genetic cell fate mapping through green fluorescent protein (GFP) expression under the control of vimentin induction after acute myocardial infarction (MI). Following permanent ligation of the left anterior descending coronary artery in CreER+ mTom/mGFP+ mice, vimentin/GFP+ cells revealed ischemia-responsive activation, survival, and local enrichment inside the peri-infarction border zone. Fluorescence-activated cell sorting (FACS)-isolated vimentin/GFP+ cells could be strongly expanded in vitro with clonogenic precursor formation and revealed MSC-typical cell morphology. Flow-cytometric analyses demonstrated an increase in cardiac vimentin/GFP+ cells in the ischemic heart, from a 0.6% cardiac mononuclear cell (MNC) fraction at 24 h to 1.6% at 72 h following MI. Sca-1+CD45- cells within the vimentin/GFP+ subtype of this MNC fraction increased from 35.2% at 24 h to 74.6% at 72 h after MI. The cardiac postischemic vimentin/GFP+ MNC subtype showed multipotent adipogenic, chondrogenic, and osteogenic differentiation potential, which is distinctive for MSCs. In conclusion, we demonstrated a seemingly proliferative first response of vimentin- induced cardiac endogenous MSCs in the acutely ischemic heart. Genetically, GFP-targeted in vivo cell tracking, isolation, and in vitro expansion of this cardiac MSC subtype could help to clarify their reparative status in inflammation, fibrogenesis, cell turnover, tissue homeostasis, and myocardial regeneration.


Assuntos
Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Vimentina/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Separação Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Antígenos Comuns de Leucócito/análise , Antígenos Comuns de Leucócito/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Vimentina/análise
6.
Eur Surg Res ; 58(5-6): 341-353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073604

RESUMO

BACKGROUND/PURPOSE: Cardiac mesenchymal stem cells (MSCs) could stimulate cell-specific regenerative mechanisms after myocardial infarction (MI) depending on spatial origin, distribution, and niche regulation. We aimed at identifying and isolating tissue-specific cardiac MSCs that could contribute to regeneration. METHODS: Following permanent ligation of the left anterior descending coronary artery in rats (n = 16), early cardiac tissues and cardiac mononuclear cells (MNCs) were analyzed by immunohistology, confocal laser scanning microscopy, and flow cytometry, respectively. Early postischemic specific MSCs were purified by fluorescence-activated cell sorting, cultivated under standardized culture conditions, and tested for multipotent differentiation in functional identification kits. RESULTS: Cardiac MSC niches were detected intramyocardially in cell clusters after MI and characterized by positive expression for vimentin, CD29, CD44, CD90, CD105, PDGFRα, and DDR2. Following myocardial ischemia, proliferation was induced early and proliferation density was approximately 11% in intramyocardial MSC clusters of the peri-infarction border zone. Cluster sizes increased by 157 and 64% in the peri-infarction and noninfarcted areas of infarcted hearts compared with noninfarcted hearts 24 h following MI, respectively. Coincidentally, flow cytometry analyses illustrated postischemic moderate enrichments of CD45-CD44+ and CD45-DDR2+ cardiac MNCs. We enabled isolation of early postischemic culturable cardiac CD45-CD44+DDR2+ MSCs that demonstrated typical clonogenicity with colony-forming unit-fibroblast formation as well as adipogenic, chondrogenic, and osteogenic differentiation. CONCLUSIONS: MI triggered early proliferation in specific cardiac MSC niches that were organized in intramyocardial clusters. Following targeted isolation, early postischemic cardiac CD45-CD44+DDR2+ MSCs exhibited typical characteristics with multipotent differentiation capacity and clonogenic expansion.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Isquemia Miocárdica , Miocárdio/citologia , Regeneração , Animais , Proliferação de Células , Masculino , Ratos Endogâmicos Lew , Nicho de Células-Tronco
7.
J Mol Cell Cardiol ; 98: 117-27, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27480520

RESUMO

Small antisense RNAs like miRNA and siRNA are of crucial importance in cardiac physiology, pathology and, moreover, can be applied as therapeutic agents for the treatment of cardiovascular diseases. Identification of novel strategies for miRNA/siRNA therapy requires a comprehensive understanding of the underlying mechanisms. Emerging data suggest that small RNAs are transferred between cells via gap junctions and provoke gene regulatory effects in the recipient cell. To elucidate the role of miRNA/siRNA as signalling molecules, suitable tools are required that will allow the analysis of these small RNAs at the cellular level. In the present study, we applied 3 dimensional fluorescence recovery after photo bleaching microscopy (3D-FRAP) to visualise and quantify the gap junctional exchange of small RNAs between neonatal cardiomyocytes in real time. Cardiomyocytes were transfected with labelled miRNA and subjected to FRAP microscopy. Interestingly, we observed recovery rates of 21% already after 13min, indicating strong intercellular shuttling of miRNA, which was significantly reduced when connexin43 was knocked down. Flow cytometry analysis confirmed our FRAP results. Furthermore, using an EGFP/siRNA reporter construct we demonstrated that the intercellular transfer does not affect proper functioning of small RNAs, leading to marker gene silencing in the recipient cell. Our results show that 3D-FRAP microscopy is a straightforward, non-invasive live cell imaging technique to evaluate the GJ-dependent shuttling of small RNAs with high spatio-temporal resolution. Moreover, the data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation where small RNAs act as signalling molecules within the intercellular network.


Assuntos
Recuperação de Fluorescência Após Fotodegradação , Junções Comunicantes/metabolismo , MicroRNAs/metabolismo , Microscopia de Fluorescência , Imagem Molecular , Miócitos Cardíacos/metabolismo , Transporte de RNA , RNA Antissenso/metabolismo , Animais , Animais Recém-Nascidos , Comunicação Celular , Camundongos , Imagem Molecular/métodos
8.
J Cell Mol Med ; 19(8): 1975-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25991381

RESUMO

Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4(+) AT2R(+) cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4(+) AT2R(+) T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4(+) cells. CD4(+) AT2R(+) T cells within blood CD4(+) T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4(+) AT2R(+) T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4(+) AT2R(+) T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4(+) AT2R(+) cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4(+) AT2R(+) cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Testes de Função Cardíaca , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/fisiopatologia , Receptor Tipo 2 de Angiotensina/metabolismo , Remodelação Ventricular , Animais , Cardiotônicos/metabolismo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Imunomodulação , Interleucina-10/sangue , Infarto do Miocárdio/sangue , Infarto do Miocárdio/complicações , Isquemia Miocárdica/sangue , Isquemia Miocárdica/complicações , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/fisiopatologia , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue
9.
Cell Physiol Biochem ; 37(1): 77-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303045

RESUMO

BACKGROUND/AIMS: CD117(+) stem cell (SC) based therapy is considered an alternative therapeutic option for terminal heart disease. However, controversies exist on the effects of CD117(+) SC implantation. In particular, the link between CD117(+) SC function and angiotensin-II-type-2 receptor (AT2R) after MI is continuously discussed. We therefore asked whether 1) AT2R stimulation influences CD117(+) SC properties in vitro and, 2) which effects can be ascribed to AT2R stimulation in vivo. METHODS: We approached AT2R stimulation with Angiotensin II while simultaneously blocking its opponent receptor AT1 with Losartan. CD117 effects were dissected using a 2D-Matrigel assay and HL-1 co-culture in vitro. A model of myocardial infarction, in which we implanted EGFP(+) CD117 SC, was further applied. RESULTS: While we found indications for AT2R driven vasculogenesis in vitro, co-culture experiments revealed that CD117(+) SC improve vitality of cardiomyocytes independently of AT2R function. Likewise, untreated CD117(+) SC had a positive effect on cardiac function and acted cardioprotective in vivo. CONCLUSIONS: Therefore, our data show that transient AT2R stimulation does not significantly add to the beneficial actions of CD117(+) SC in vivo. Yet, exploiting AT2R driven vasculogenis via an optimized AT2R stimulation protocol may become a promising tool for cardiac SC therapy.


Assuntos
Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Angiotensina II/metabolismo , Animais , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Técnicas de Cocultura/métodos , Losartan/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
10.
Cell Physiol Biochem ; 35(4): 1360-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25720503

RESUMO

BACKGROUND: By far, most strategies for cell reprogramming and gene therapy are based on the introduction of DNA after viral delivery. To avoid the high risks accompanying these goals, non-viral and DNA-free delivery methods for various cell types are required. METHODS: Relying on an initially established PCR-based protocol for convenient template DNA production, we synthesized five differently modified EGFP mRNA (mmRNA) species, incorporating various degrees of 5-methylcytidine-5'-triphosphate (5mC) and pseudouridine-5'-triphosphate (Ψ). We then investigated their effect on i) protein expression efficiencies and ii) cell viability for human mesenchymal stem cells (hMSCs) and fibroblasts from different origins. RESULTS: Our protocol allows highly efficient mmRNA production in vitro, enabling rapid and stable protein expression after cell transfection. However, our results also demonstrate that the terminally optimal modification needs to be defined in pilot experiments for each particular cell type. Transferring our approach to the conversion of fibroblasts into skeletal myoblasts using mmRNA encoding MyoD, we confirm the huge potential of mmRNA based protein expression for virus- and DNA-free reprogramming strategies. CONCLUSION: The achieved high protein expression levels combined with good cell viability not only in fibroblasts but also in hMSCs provides a promising option for mmRNA based modification of various cell types including slowly proliferating adult stem cells. Therefore, we are confident that our findings will substantially contribute to the improvement of efficient cell reprogramming and gene therapy approaches.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteína MyoD/metabolismo , RNA Mensageiro/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Células COS , Células Cultivadas , Reprogramação Celular , Chlorocebus aethiops , Citidina/análogos & derivados , Citidina/química , Citidina/farmacologia , DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína MyoD/genética , Pseudouridina/química , Pseudouridina/farmacologia , Transfecção , Vírus/genética , Vírus/metabolismo
11.
Int J Mol Sci ; 14(6): 10710-26, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23702843

RESUMO

Bone marrow derived human mesenchymal stem cells (hMSCs) show promising potential in regeneration of defective tissue. Recently, gene silencing strategies using microRNAs (miR) emerged with the aim to expand the therapeutic potential of hMSCs. However, researchers are still searching for effective miR delivery methods for clinical applications. Therefore, we aimed to develop a technique to efficiently deliver miR into hMSCs with the help of a magnetic non-viral vector based on cationic polymer polyethylenimine (PEI) bound to iron oxide magnetic nanoparticles (MNP). We tested different magnetic complex compositions and determined uptake efficiency and cytotoxicity by flow cytometry. Additionally, we monitored the release, processing and functionality of delivered miR-335 with confocal laser scanning microscopy, real-time PCR and live cell imaging, respectively. On this basis, we established parameters for construction of magnetic non-viral vectors with optimized uptake efficiency (~75%) and moderate cytotoxicity in hMSCs. Furthermore, we observed a better transfection performance of magnetic complexes compared to PEI complexes 72 h after transfection. We conclude that MNP-mediated transfection provides a long term effect beneficial for successful genetic modification of stem cells. Hence, our findings may become of great importance for future in vivo applications.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Movimento Celular , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Fatores de Tempo , Transfecção
12.
Genome Med ; 15(1): 61, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563727

RESUMO

BACKGROUND: The immune response is a crucial factor for mediating the benefit of cardiac cell therapies. Our previous research showed that cardiomyocyte transplantation alters the cardiac immune response and, when combined with short-term pharmacological CCR2 inhibition, resulted in diminished functional benefit. However, the specific role of innate immune cells, especially CCR2 macrophages on the outcome of cardiomyocyte transplantation, is unclear. METHODS: We compared the cellular, molecular, and functional outcome following cardiomyocyte transplantation in wildtype and T cell- and B cell-deficient Rag2del mice. The cardiac inflammatory response was assessed using flow cytometry. Gene expression profile was assessed using single-cell and bulk RNA sequencing. Cardiac function and morphology were determined using magnetic resonance tomography and immunohistochemistry respectively. RESULTS: Compared to wildtype mice, Rag2del mice show an increased innate immune response at steady state and disparate macrophage response after MI. Subsequent single-cell analyses after MI showed differences in macrophage development and a lower prevalence of CCR2 expressing macrophages. Cardiomyocyte transplantation increased NK cells and monocytes, while reducing CCR2-MHC-IIlo macrophages. Consequently, it led to increased mRNA levels of genes involved in extracellular remodelling, poor graft survival, and no functional improvement. Using machine learning-based feature selection, Mfge8 and Ccl7 were identified as the primary targets underlying these effects in the heart. CONCLUSIONS: Our results demonstrate that the improved functional outcome following cardiomyocyte transplantation is dependent on a specific CCR2 macrophage response. This work highlights the need to study the role of the immune response for cardiomyocyte cell therapy for successful clinical translation.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Macrófagos/metabolismo , Monócitos/metabolismo , Camundongos Endogâmicos C57BL
13.
Cell Death Dis ; 14(8): 523, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582912

RESUMO

Long-living individuals (LLIs) escape age-related cardiovascular complications until the very last stage of life. Previous studies have shown that a Longevity-Associated Variant (LAV) of the BPI Fold Containing Family B Member 4 (BPIFB4) gene correlates with an extraordinarily prolonged life span. Moreover, delivery of the LAV-BPIFB4 gene exerted therapeutic action in murine models of atherosclerosis, limb ischemia, diabetic cardiomyopathy, and aging. We hypothesize that downregulation of BPIFB4 expression marks the severity of coronary artery disease (CAD) in human subjects, and supplementation of the LAV-BPIFB4 protects the heart from ischemia. In an elderly cohort with acute myocardial infarction (MI), patients with three-vessel CAD were characterized by lower levels of the natural logarithm (Ln) of peripheral blood BPIFB4 (p = 0.0077). The inverse association between Ln BPIFB4 and three-vessel CAD was confirmed by logistic regression adjusting for confounders (Odds Ratio = 0.81, p = 0.0054). Moreover, in infarcted mice, a single administration of LAV-BPIFB4 rescued cardiac function and vascularization. In vitro studies showed that LAV-BPIFB4 protein supplementation exerted chronotropic and inotropic actions on induced pluripotent stem cell (iPSC)-derived cardiomyocytes. In addition, LAV-BPIFB4 inhibited the pro-fibrotic phenotype in human cardiac fibroblasts. These findings provide a strong rationale and proof of concept evidence for treating CAD with the longevity BPIFB4 gene/protein.


Assuntos
Doença da Artéria Coronariana , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade , Idoso , Animais , Humanos , Camundongos , Envelhecimento/genética , Haplótipos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isquemia , Longevidade/genética
14.
J Immunol ; 185(10): 6286-93, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20935205

RESUMO

Emerging evidence suggests a cardioprotective role of the angiotensin AT2R, albeit the underlying cellular mechanisms are not well understood. We aimed in this article to elucidate a potential role of cardiac angiotensin AT2R in regulating cellular immune response to ischemic heart injury. Seven days after myocardial infarction in rats, double-immunofluorescence staining showed that AT2R was detected in a fraction of CD8(+) T cells infiltrating in the peri-infarct myocardium. We developed a method that allowed the isolation of myocardial infiltrating CD8(+)AT2R(+) T cells using modified MACS, and further characterization and purification with flow cytometry. Although the CD8(+)AT2R(-) T cells exhibited potent cytotoxicity to both adult and fetal cardiomyocytes (CMs), the CD8(+)AT2R(+) T cells were noncytotoxic to these CMs. The CD8(+)AT2R(+) T cells were characterized by upregulated IL-10 and downregulated IL-2 and INF-γ expression when compared with CD8(+)AT2R(-) T cells. We further showed that IL-10 gene expression was enhanced in CD8(+) T cells on in vitro AT2R stimulation. Importantly, in vivo AT2R activation engendered an increment of CD8(+)AT2R(+) T cells and IL-10 production in the ischemic myocardium. In addition, intramyocardial transplantation of CD8(+)AT2R(+) T cells (versus CD8(+)AT2R(-)) led to reduced ischemic heart injury. Moreover, the CD8(+)AT2R(+) T cell population was also demonstrated in human peripheral blood. Thus, we have defined the cardioprotective CD8(+)AT2R(+) T cell population, which increases during ischemic heart injury and contributes to maintaining CM viability and providing IL-10, hence revealing an AT2R-mediated cellular mechanism in modulating adaptive immune response in the heart.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-10/biossíntese , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Receptor Tipo 2 de Angiotensina/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Imunofluorescência , Expressão Gênica , Interleucina-10/imunologia , Masculino , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Receptor Tipo 2 de Angiotensina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia
15.
Cancers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063457

RESUMO

Cyclin-dependent kinase inhibitors (CDKi´s) display cytotoxic activity against different malignancies, including head and neck squamous cell carcinomas (HNSCC). By coordinating the DNA damage response, these substances may be combined with cytostatics to enhance cytotoxicity. Here, we investigated the influence of different CDKi´s (palbociclib, dinaciclib, THZ1) on two HNSCC cell lines in monotherapy and combination therapy with clinically-approved drugs (5-FU, Cisplatin, cetuximab). Apoptosis/necrosis, cell cycle, invasiveness, senescence, radiation-induced γ-H2AX DNA double-strand breaks, and effects on the actin filament were studied. Furthermore, the potential to increase tumor immunogenicity was assessed by analyzing Calreticulin translocation and immune relevant surface markers. Finally, an in vivo mouse model was used to analyze the effect of dinaciclib and Cisplatin combination therapy. Dinaciclib, palbociclib, and THZ1 displayed anti-neoplastic activity after low-dose treatment, while the two latter substances slightly enhanced radiosensitivity. Dinaciclib decelerated wound healing, decreased invasiveness, and induced MHC-I, accompanied by high amounts of surface-bound Calreticulin. Numbers of early and late apoptotic cells increased initially (24 h), while necrosis dominated afterward. Antitumoral effects of the selective CDKi palbociclib were weaker, but combinations with 5-FU potentiated effects of the monotherapy. Additionally, CDKi and CDKi/chemotherapy combinations induced MHC I, indicative of enhanced immunogenicity. The in vivo studies revealed a cell line-specific response with best tumor growth control in the combination approach. Global acting CDKi's should be further investigated as targeting agents for HNSCC, either individually or in combination with selected drugs. The ability of dinaciclib to increase the immunogenicity of tumor cells renders this substance a particularly interesting candidate for immune-based oncological treatment regimens.

16.
Biomedicines ; 8(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545336

RESUMO

Several cell populations derived from bone marrow (BM) have been shown to possess cardiac regenerative potential. Among these are freshly isolated CD133+ hematopoietic as well as culture-expanded mesenchymal stem cells. Alternatively, by purifying CD271+ cells from BM, mesenchymal progenitors can be enriched without an ex vivo cultivation. With regard to the limited available number of freshly isolated BM-derived stem cells, the effect of the dosage on the therapeutic efficiency is of particular interest. Therefore, in the present pre-clinical study, we investigated human BM-derived CD133+ and CD271+ stem cells for their cardiac regenerative potential three weeks post-myocardial infarction (MI) in a dose-dependent manner. The improvement of the hemodynamic function as well as cardiac remodeling showed no therapeutic difference after the transplantation of both 100,000 and 500,000 stem cells. Therefore, beneficial stem cell transplantation post-MI is widely independent of the cell dose and detrimental stem cell amplification in vitro can likely be avoided.

17.
Adv Drug Deliv Rev ; 165-166: 96-104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32305352

RESUMO

In biomedical research, enormous progress is being made and new candidates for putative medicinal products emerge. However, most published preclinical data are not conducted according to the standard Good Laboratory Practice (GLP). GLP is mandatory for preclinical analysis of Advanced Therapy Medicinal Products (ATMP) and thereby a prerequisite for planning and conduction of clinical trials. Not inconsiderable numbers of clinical trials are terminated earlier or fail - do inadequate testing strategies or missing specialized assays during the preclinical development contribute to this severe complex of problems? Unfortunately, there is also a lack of access to GLP testing results and OECD (Organisation for Economic Co-operation and Development) GLP guidelines are not yet adjusted to ATMP specialties. Ultimately, GLP offers possibilities to generate reliable and reproducible data. Therefore, this review elucidates different GLP aspects in drug development, speculates on reasons of putative low GLP acceptance in the scientific community and mentions solution proposals.


Assuntos
Desenvolvimento de Medicamentos/organização & administração , Descoberta de Drogas/organização & administração , Avaliação Pré-Clínica de Medicamentos/métodos , Laboratórios/organização & administração , Doenças Cardiovasculares/tratamento farmacológico , Desenvolvimento de Medicamentos/normas , Descoberta de Drogas/normas , Avaliação Pré-Clínica de Medicamentos/normas , Guias como Assunto , Humanos , Laboratórios/normas
18.
Cells ; 9(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756334

RESUMO

We investigated the influence of syngeneic cardiomyocyte transplantation after myocardial infarction (MI) on the immune response and cardiac function. Methods and Results: We show for the first time that the immune response is altered as a result of syngeneic neonatal cardiomyocyte transplantation after MI leading to improved cardiac pump function as observed by magnetic resonance imaging in C57BL/6J mice. Interestingly, there was no improvement in the capillary density as well as infarct area as observed by CD31 and Sirius Red staining, respectively. Flow cytometric analysis revealed a significantly different response of monocyte-derived macrophages and regulatory T cells after cell transplantation. Interestingly, the inhibition of monocyte infiltration accompanied by cardiomyocyte transplantation diminished the positive effect of cell transplantation alone. The number of CD68+ macrophages in the remote area of the heart observed after four weeks was also different between the groups. Transcriptome analysis showed several changes in the gene expression involving circadian regulation, mitochondrial metabolism and immune responses after cardiomyocyte transplantation. Conclusion: Our work shows that cardiomyocyte transplantation alters the immune response after myocardial infarction with the recruited monocytes playing a role in the beneficial effect of cell transplantation. It also paves the way for further optimization of the efficacy of cardiomyocyte transplantation and their successful translation in the clinic.


Assuntos
Infarto do Miocárdio/terapia , Miocárdio/imunologia , Miócitos Cardíacos/transplante , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Coração/fisiologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/imunologia , Receptores CCR2/imunologia , Linfócitos T Reguladores/imunologia
19.
Biomedicines ; 8(11)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171654

RESUMO

The aim of the study was to establish electrical stimulation parameters in order to improve cell growth and viability of human adipose-derived stem cells (hADSC) when compared to non-stimulated cells in vitro. hADSC were exposed to continuous electrical stimulation with 1.7 V AC/20 Hz. After 24, 72 h and 7 days, cell number, cellular surface coverage and cell proliferation were assessed. In addition, cell cycle analysis was carried out after 3 and 7 days. After 24 h, no significant alterations were observed for stimulated cells. At day 3, stimulated cells showed a 4.5-fold increase in cell numbers, a 2.7-fold increase in cellular surface coverage and a significantly increased proliferation. Via cell cycle analysis, a significant increase in the G2/M phase was monitored for stimulated cells. Contrastingly, after 7 days, the non-stimulated group exhibited a 11-fold increase in cell numbers and a 4-fold increase in cellular surface coverage as well as a significant increase in cell proliferation. Moreover, the stimulated cells displayed a shift to the G1 and sub-G1 phase, indicating for metabolic arrest and apoptosis initiation. In accordance, continuous electrical stimulation of hADSC led to a significantly increased cell growth and proliferation after 3 days. However, longer stimulation periods such as 7 days caused an opposite result indicating initiation of apoptosis.

20.
Cells ; 9(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892273

RESUMO

BACKGROUND: Bone marrow (BM)-derived stem cells with their various functions and characteristics have become a well-recognized source for the cell-based therapies. However, knowledge on their therapeutic potential and the shortage for a cross-link between distinct BM-derived stem cells, primed after the onset of myocardial infarction (MI), seems to be still rudimentary. Therefore, the post-examination of the therapeutic characteristics of such primed hematopoietic CD133+ and mesenchymal CD271+ stem cells was the object of the present study. METHODS AND RESULTS: The effects of respective CD133+ and CD271+ mononuclear cells alone as well as in the co-culture model have been explored with focus on their angiogenic potential. The phenotypic analysis revealed a small percentage of isolated cells expressing both surface markers. Moreover, target stem cells isolated with our standardized immunomagnetic isolation procedure did not show any negative alterations following BM storage in regard to cell numbers and/or quality. In vitro network formation relied predominantly on CD271+ stem cells when compared with single CD133+ culture. Interestingly, CD133+ cells contributed in the tube formation, only if they were cultivated in combination with CD271+ cells. Additional to the in vitro examination, therapeutic effects of the primed stem cells were investigated 48 h post MI in a murine model. Hence, we have found a lower expression of transforming growth factor ßeta 3 (TGFß3) as well as an increase of the proangiogenic factors after CD133+ cell treatment in contrast to CD271+ cell treatment. On the other hand, the CD271+ cell therapy led to a lower expression of the inflammatory cytokines. CONCLUSION: The interactions between CD271+ and CD133+ subpopulations the extent to which the combination may enhance cardiac regeneration has still not been investigated so far. We expect that the multiple characteristics and various regenerative effects of CD271+ cells alone as well as in combination with CD133+ will result in an improved therapeutic impact on ischemic heart disease.


Assuntos
Antígeno AC133/metabolismo , Adapaleno/metabolismo , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Neovascularização Fisiológica , Animais , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Imunofenotipagem , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/etiologia , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA