Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 14(4): e1007342, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659565

RESUMO

Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP) is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Osmorregulação/fisiologia , Streptococcus agalactiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Homeostase/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Mutação , Osmorregulação/genética , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Potássio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/crescimento & desenvolvimento
2.
RNA ; 22(4): 506-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826129

RESUMO

The mature HIV-1 nucleocapsid protein NCp7 (NC) plays a key role in reverse transcription facilitating the two obligatory strand transfers. Several properties contribute to its efficient chaperon activity: preferential binding to single-stranded regions, nucleic acid aggregation, helix destabilization, and rapid dissociation from nucleic acids. However, little is known about the relationships between these different properties, which are complicated by the ability of the protein to recognize particular HIV-1 stem-loops, such as SL1, SL2, and SL3, with high affinity and without destabilizing them. These latter properties are important in the context of genome packaging, during which NC is part of the Gag precursor. We used NMR to investigate destabilization of the full-length TAR (trans activating response element) RNA by NC, which is involved in the first strand transfer step of reverse transcription. NC was used at a low protein:nucleotide (nt) ratio of 1:59 in these experiments. NMR data for the imino protons of TAR identified most of the base pairs destabilized by NC. These base pairs were adjacent to the loops in the upper part of the TAR hairpin rather than randomly distributed. Gel retardation assays showed that conversion from the initial TAR-cTAR complex to the fully annealed form occurred much more slowly at the 1:59 ratio than at the higher ratios classically used. Nevertheless, NC significantly accelerated the formation of the initial complex at a ratio of 1:59.


Assuntos
HIV-1/genética , RNA Viral/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Bases , Sequências Repetidas Invertidas , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade de RNA , Elementos de Resposta
3.
RNA Biol ; 11(7): 906-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144404

RESUMO

The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity.


Assuntos
HIV-1/metabolismo , Chaperonas Moleculares/metabolismo , RNA de Transferência/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Dicroísmo Circular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
4.
Science ; 372(6541): 516-520, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926955

RESUMO

Cells have two purine pathways that synthesize adenine and guanine ribonucleotides from phosphoribose via inosylate. A chemical hybrid between adenine and guanine, 2-aminoadenine (Z), replaces adenine in the DNA of the cyanobacterial virus S-2L. We show that S-2L and Vibrio phage PhiVC8 encode a third purine pathway catalyzed by PurZ, a distant paralog of succinoadenylate synthase (PurA), the enzyme condensing aspartate and inosylate in the adenine pathway. PurZ condenses aspartate with deoxyguanylate into dSMP (N6-succino-2-amino-2'-deoxyadenylate), which undergoes defumarylation and phosphorylation to give dZTP (2-amino-2'-deoxyadenosine-5'-triphosphate), a substrate for the phage DNA polymerase. Crystallography and phylogenetics analyses indicate a close relationship between phage PurZ and archaeal PurA enzymes. Our work elucidates the biocatalytic innovation that remodeled a DNA building block beyond canonical molecular biology.


Assuntos
2-Aminopurina/análogos & derivados , Adenilossuccinato Sintase/química , Bacteriófagos/química , Bacteriófagos/enzimologia , Vias Biossintéticas , DNA Viral/química , Proteínas não Estruturais Virais/química , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenilossuccinato Sintase/classificação , Adenilossuccinato Sintase/genética , Bacteriófagos/genética , Cristalografia por Raios X , DNA Viral/genética , Genoma Viral , Filogenia , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/genética
5.
PLoS One ; 8(6): e64700, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762248

RESUMO

The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNA(Lys) 3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNA(Lys) 3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for "primer activation signal" was proposed to interact with the T-arm of tRNA(Lys) 3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNA(Lys) 3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription.


Assuntos
Genoma Viral , HIV-1/genética , RNA de Transferência de Lisina/genética , RNA Viral/genética , Transcrição Reversa , Regiões 5' não Traduzidas/genética , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Primers do DNA/genética , Primers do DNA/metabolismo , Regulação da Expressão Gênica , Infecções por HIV/virologia , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA de Transferência de Lisina/metabolismo , RNA Viral/metabolismo , Replicação Viral
6.
Virus Res ; 169(2): 324-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22721779

RESUMO

HIV-1 reverse transcription is initiated from a tRNA(Lys)(3) molecule annealed to the viral RNA at the primer binding site (PBS). The annealing of tRNA(Lys)(3) requires the opening of its three-dimensional structure and RNA rearrangements to form an efficient initiation complex recognized by the reverse transcriptase. This annealing is mediated by the nucleocapsid protein (NC). In this paper, we first review the actual knowledge about HIV-1 viral RNA and tRNA(Lys)(3) structures. Then, we summarize the studies explaining how NC chaperones the formation of the tRNA(Lys)(3)/PBS binary complex. Additional NMR data that investigated the NC interaction with tRNA(Lys)(3) D-loop are presented. Lastly, we focused on the additional interactions occurring between tRNA(Lys)(3) and the viral RNA and showed that they are dependent on HIV-1 isolates, i.e. the sequence and the structure of the viral RNA.


Assuntos
HIV-1/fisiologia , RNA de Transferência de Lisina/metabolismo , RNA Viral/metabolismo , Transcrição Reversa , Espectroscopia de Ressonância Magnética , Chaperonas Moleculares/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência de Lisina/química , RNA Viral/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
7.
Virus Res ; 169(2): 361-76, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22728817

RESUMO

The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.


Assuntos
HIV-1/fisiologia , Chaperonas Moleculares/metabolismo , Multimerização Proteica , RNA de Transferência de Lisina/metabolismo , RNA Viral/metabolismo , Montagem de Vírus , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA