Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Genet ; 18(11): e1010367, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36327219

RESUMO

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Assuntos
COVID-19 , Exoma , Humanos , Exoma/genética , Estudo de Associação Genômica Ampla , COVID-19/genética , Predisposição Genética para Doença , Receptor 7 Toll-Like/genética , SARS-CoV-2/genética
2.
Psychol Med ; 53(6): 2619-2633, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379376

RESUMO

BACKGROUND: Anorexia nervosa (AN) is a psychiatric disorder with complex etiology, with a significant portion of disease risk imparted by genetics. Traditional genome-wide association studies (GWAS) produce principal evidence for the association of genetic variants with disease. Transcriptomic imputation (TI) allows for the translation of those variants into regulatory mechanisms, which can then be used to assess the functional outcome of genetically regulated gene expression (GReX) in a broader setting through the use of phenome-wide association studies (pheWASs) in large and diverse clinical biobank populations with electronic health record phenotypes. METHODS: Here, we applied TI using S-PrediXcan to translate the most recent PGC-ED AN GWAS findings into AN-GReX. For significant genes, we imputed AN-GReX in the Mount Sinai BioMe™ Biobank and performed pheWASs on over 2000 outcomes to test the clinical consequences of aberrant expression of these genes. We performed a secondary analysis to assess the impact of body mass index (BMI) and sex on AN-GReX clinical associations. RESULTS: Our S-PrediXcan analysis identified 53 genes associated with AN, including what is, to our knowledge, the first-genetic association of AN with the major histocompatibility complex. AN-GReX was associated with autoimmune, metabolic, and gastrointestinal diagnoses in our biobank cohort, as well as measures of cholesterol, medications, substance use, and pain. Additionally, our analyses showed moderation of AN-GReX associations with measures of cholesterol and substance use by BMI, and moderation of AN-GReX associations with celiac disease by sex. CONCLUSIONS: Our BMI-stratified results provide potential avenues of functional mechanism for AN-genes to investigate further.


Assuntos
Anorexia Nervosa , Estudo de Associação Genômica Ampla , Humanos , Anorexia Nervosa/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , Transcriptoma , Predisposição Genética para Doença/genética
3.
Am J Hum Genet ; 102(6): 1169-1184, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805045

RESUMO

Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up.


Assuntos
Estudo de Associação Genômica Ampla , Córtex Pré-Frontal/patologia , Locos de Características Quantitativas/genética , Esquizofrenia/genética , Células Cultivadas , Epigênese Genética , Genoma Humano , Humanos
4.
Genome Res ; 27(6): 959-972, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28356321

RESUMO

Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Receptores de Estrogênio/genética , Estresse Psicológico/genética , Fatores de Transcrição/genética , Comportamento Agonístico , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Cromatina/ultraestrutura , Metabolismo Energético/genética , Lobo Frontal/metabolismo , Lobo Frontal/fisiopatologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Masculino , Camundongos , Neurônios/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ligação Proteica , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Receptor ERRalfa Relacionado ao Estrogênio
5.
Proc Natl Acad Sci U S A ; 111(50): 17929-34, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453090

RESUMO

Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.


Assuntos
Abelhas/fisiologia , Evolução Biológica , Encéfalo/fisiologia , Smegmamorpha/fisiologia , Comportamento Social , Territorialidade , Animais , Sequência de Bases , Abelhas/genética , Primers do DNA/genética , Metabolismo Energético/fisiologia , Genômica/métodos , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Anotação de Sequência Molecular , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de RNA , Transdução de Sinais/fisiologia , Smegmamorpha/genética , Especificidade da Espécie , Fatores de Transcrição/metabolismo
6.
Calcif Tissue Int ; 95(1): 29-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798737

RESUMO

Perlecan/HSPG2 (Pln) is a large heparan sulfate proteoglycan abundant in the extracellular matrix of cartilage and the lacunocanalicular space of adult bones. Although Pln function during cartilage development is critical, evidenced by deficiency disorders including Schwartz-Jampel Syndrome and dyssegmental dysplasia Silverman-Handmaker type, little is known about its function in development of bone shape and quality. The purpose of this study was to understand the contribution of Pln to bone geometric and mechanical properties. We used hypomorph mutant mice that secrete negligible amount of Pln into skeletal tissues and analyzed their adult bone properties using micro-computed tomography and three-point-bending tests. Bone shortening and widening in Pln mutants was observed and could be attributed to loss of growth plate organization and accelerated osteogenesis that was reflected by elevated cortical thickness at older ages. This effect was more pronounced in Pln mutant females, indicating a sex-specific effect of Pln deficiency on bone geometry. Additionally, mutant females, and to a lesser extent mutant males, increased their elastic modulus and bone mineral densities to counteract changes in bone shape, but at the expense of increased brittleness. In summary, Pln deficiency alters cartilage matrix patterning and, as we now show, coordinately influences bone formation and calcification.


Assuntos
Desenvolvimento Ósseo/fisiologia , Proteoglicanas de Heparan Sulfato/deficiência , Osteogênese/fisiologia , Envelhecimento , Animais , Osso e Ossos , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Microtomografia por Raio-X
7.
Nat Commun ; 15(1): 6801, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122707

RESUMO

One of the main drivers of autism spectrum disorder is risk alleles within hundreds of genes, which may interact within shared but unknown protein complexes. Here we develop a scalable genome-editing-mediated approach to target 14 high-confidence autism risk genes within the mouse brain for proximity-based endogenous proteomics, achieving the identification of high-specificity spatial proteomes. The resulting native proximity proteomes are enriched for human genes dysregulated in the brain of autistic individuals, and reveal proximity interactions between proteins from high-confidence risk genes with those of lower-confidence that may provide new avenues to prioritize genetic risk. Importantly, the datasets are enriched for shared cellular functions and genetic interactions that may underlie the condition. We test this notion by spatial proteomics and CRISPR-based regulation of expression in two autism models, demonstrating functional interactions that modulate mechanisms of their dysregulation. Together, these results reveal native proteome networks in vivo relevant to autism, providing new inroads for understanding and manipulating the cellular drivers underpinning its etiology.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Encéfalo , Modelos Animais de Doenças , Proteoma , Proteômica , Animais , Proteoma/metabolismo , Camundongos , Humanos , Encéfalo/metabolismo , Proteômica/métodos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Fenótipo , Edição de Genes , Masculino , Predisposição Genética para Doença , Camundongos Endogâmicos C57BL , Feminino , Sistemas CRISPR-Cas
8.
HGG Adv ; 3(4): 100138, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36119806

RESUMO

Activity-dependent neuroprotective protein (ADNP) syndrome is a rare genetic condition associated with intellectual disability and autism spectrum disorder. Preclinical evidence suggests that low-dose ketamine may induce expression of ADNP and that neuroprotective effects of ketamine may be mediated by ADNP. The goal of the proposed research was to evaluate the safety, tolerability, and behavioral outcomes of low-dose ketamine in children with ADNP syndrome. We also sought to explore the feasibility of using electrophysiological markers of auditory steady-state response and computerized eye tracking to assess biomarker sensitivity to treatment. This study utilized a single-dose (0.5 mg/kg), open-label design, with ketamine infused intravenously over 40 min. Ten children with ADNP syndrome ages 6 to 12 years were enrolled. Ketamine was generally well tolerated, and there were no serious adverse events. The most common adverse events were elation/silliness (50%), fatigue (40%), and increased aggression (40%). Using parent-report instruments to assess treatment effects, ketamine was associated with nominally significant improvement in a wide array of domains, including social behavior, attention deficit and hyperactivity, restricted and repetitive behaviors, and sensory sensitivities, a week after administration. Results derived from clinician-rated assessments aligned with findings from the parent reports. Overall, nominal improvement was evident based on the Clinical Global Impressions - Improvement scale, in addition to clinician-based scales reflecting key domains of social communication, attention deficit and hyperactivity, restricted and repetitive behaviors, speech, thinking, and learning, activities of daily living, and sensory sensitivities. Results also highlight the potential utility of electrophysiological measurement of auditory steady-state response and eye-tracking to index change with ketamine treatment. Findings are intended to be hypothesis generating and provide preliminary support for the safety and efficacy of ketamine in ADNP syndrome in addition to identifying useful endpoints for a ketamine clinical development program. However, results must be interpreted with caution given limitations of this study, most importantly the small sample size and absence of a placebo-control group.

9.
Nat Genet ; 53(6): 817-829, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34002096

RESUMO

Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.


Assuntos
Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Cromossomos Humanos/genética , Predisposição Genética para Doença , Genoma Humano , Humanos , Complexo Principal de Histocompatibilidade/genética , Herança Multifatorial/genética , Fenótipo , Locos de Características Quantitativas/genética , Fatores de Risco
10.
Cell Rep ; 31(9): 107716, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492425

RESUMO

To reveal post-traumatic stress disorder (PTSD) genetic risk influences on tissue-specific gene expression, we use brain and non-brain transcriptomic imputation. We impute genetically regulated gene expression (GReX) in 29,539 PTSD cases and 166,145 controls from 70 ancestry-specific cohorts and identify 18 significant GReX-PTSD associations corresponding to specific tissue-gene pairs. The results suggest substantial genetic heterogeneity based on ancestry, cohort type (military versus civilian), and sex. Two study-wide significant PTSD associations are identified in European and military European cohorts; ZNF140 is predicted to be upregulated in whole blood, and SNRNP35 is predicted to be downregulated in dorsolateral prefrontal cortex, respectively. In peripheral leukocytes from 175 marines, the observed PTSD differential gene expression correlates with the predicted differences for these individuals, and deployment stress produces glucocorticoid-regulated expression changes that include downregulation of both ZNF140 and SNRNP35. SNRNP35 knockdown in cells validates its functional role in U12-intron splicing. Finally, exogenous glucocorticoids in mice downregulate prefrontal Snrnp35 expression.


Assuntos
Córtex Pré-Frontal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Transtornos de Estresse Pós-Traumáticos/genética , Animais , Estudos de Casos e Controles , Estudos de Coortes , Dexametasona/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Militares , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/sangue , Proteínas Repressoras/metabolismo , Ribonucleoproteínas Nucleares Pequenas/antagonistas & inibidores , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Transtornos de Estresse Pós-Traumáticos/sangue , Transtornos de Estresse Pós-Traumáticos/diagnóstico
11.
Bone ; 47(1): 93-101, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20362701

RESUMO

Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues.


Assuntos
Osso e Ossos/metabolismo , Minerais/metabolismo , Proteínas Ribossômicas/deficiência , Dente/metabolismo , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Colágeno/metabolismo , Hipercementose/diagnóstico por imagem , Hipercementose/patologia , Camundongos , Dente Molar/diagnóstico por imagem , Dente Molar/metabolismo , Dente Molar/patologia , Proteínas Ribossômicas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Dente/diagnóstico por imagem , Dente/patologia , Microtomografia por Raio-X
12.
J Orthop Res ; 27(1): 28-35, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18661500

RESUMO

Mice lacking HIP/RPL29, a ribosomal modulator of protein synthesis rate, display a short stature phenotype. To understand the contribution of HIP/RPL29 to bone formation and adult whole bone mechanical properties, we examined both developing and adult bone in our knockout mice. Results indicated that bone shortening in HIP/RPL29-null mice is due to delayed entry of chondro-osteoprogenitors into the cell cycle. Structural properties of adult null bones were analyzed by micro-computed tomography. Interestingly, partial preservation of cortical thickness was observed in null males indicating a gender-specific effect of the genotype on cortical bone parameters. Null males, and to a lower extent null females, displayed increased bone material toughness to counteract decreased bone size. This elevation in a bone material property was associated with increased bone mineral density only in null males. Neither male nor female null animals could withstand the same maximum load as gender-matched controls in three-point bending tests, and smaller post-yield displacements (and thus increased bone brittleness) were found for null animals. These results suggest that HIP/RPL29-deficient mice exhibit increased bone fragility due to altered matrix protein synthesis rates as a consequence of ribosomal insufficiency. Thus, sub-efficient protein translation increased fracture risk in HIP/RPL29-null animals. Taken together, these studies provide strong genetic evidence that the ability to regulate and amplify protein synthesis rates, including those proteins that regulate the cell cycle entry during skeletal development, are important determinants for establishment of normal bone mass and quality.


Assuntos
Osso e Ossos/patologia , Osteogênese , Proteínas Ribossômicas/genética , Animais , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Proliferação de Células , Feminino , Consolidação da Fratura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Proteínas de Ligação a RNA , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA