Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Immunity ; 54(7): 1447-1462.e5, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33979579

RESUMO

Two sets of innate immune proteins detect pathogens. Pattern recognition receptors (PRRs) bind microbial products, whereas guard proteins detect virulence factor activities by the surveillance of homeostatic processes within cells. While PRRs are well known for their roles in many types of infections, the role of guard proteins in most infectious contexts remains less understood. Here, we demonstrated that inhibition of protein synthesis during viral infection is sensed as a virulence strategy and initiates pyroptosis in human keratinocytes. We identified the BCL-2 family members MCL-1 and BCL-xL as sensors of translation shutdown. Virus- or chemical-induced translation inhibition resulted in MCL-1 depletion and inactivation of BCL-xL, leading to mitochondrial damage, caspase-3-dependent cleavage of gasdermin E, and release of interleukin-1α (IL-1α). Blocking this pathway enhanced virus replication in an organoid model of human skin. Thus, MCL-1 and BCL-xL can act as guard proteins within barrier epithelia and contribute to antiviral defense.


Assuntos
Apoptose/imunologia , Células Epiteliais/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Piroptose/imunologia , Receptores de Estrogênio/imunologia , Vírus/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Caspase 3/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Interleucina-1alfa/imunologia , Camundongos , Mitocôndrias/imunologia , Células NIH 3T3 , Células Vero , Replicação Viral/imunologia , Proteína bcl-X/imunologia
2.
Mol Cell ; 71(5): 825-840.e6, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100266

RESUMO

Virulent pathogens often cause the release of host-derived damage-associated molecular patterns (DAMPs) from infected cells. During encounters with immune-evasive viruses that block inflammatory gene expression, preformed DAMPs provide backup inflammatory signals that ensure protective immunity. Whether DAMPs exhibit additional backup defense activities is unknown. Herein, we report that viral infection of barrier epithelia (keratinocytes) elicits the release of preformed interleukin-1 (IL-1) family cytokines, including the DAMP IL-1α. Mechanistic studies revealed that IL-1 acts on skin fibroblasts to induce an interferon (IFN)-like state that restricts viral replication. We identified a branch in the IL-1 signaling pathway that induces IFN-stimulated gene expression in infected cells and found that IL-1 signaling is necessary to restrict viral replication in human skin explants. These activities are most important to control immune-evasive virus replication in fibroblasts and other barrier cell types. These findings highlight IL-1 as an important backup antiviral system to ensure barrier defense.


Assuntos
Evasão da Resposta Imune/imunologia , Interleucina-1/imunologia , Transdução de Sinais/imunologia , Replicação Viral/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Feminino , Fibroblastos/imunologia , Fibroblastos/virologia , Expressão Gênica/imunologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/virologia , Células Vero
3.
Rheumatology (Oxford) ; 62(SI): SI114-SI124, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35946522

RESUMO

OBJECTIVES: Prior work demonstrates that co-cultured macrophages and fibroblasts from patients with SSc engage in reciprocal activation. However, the mechanism by which these cell types communicate and contribute to fibrosis and inflammation in SSc is unknown. METHODS: Fibroblasts were isolated from skin biopsies obtained from 7 SSc patients or 6 healthy age and gender-matched control subjects following written informed consent. Human donor-derived macrophages were cultured with exosomes isolated from control or SSc fibroblasts for an additional 48 h. Macrophages were immunophenotyped using flow cytometry, qRT-PCR and multiplex. For mutual activation studies, exosome-activated macrophages were co-cultured with SSc or healthy fibroblasts using Transwells. RESULTS: Macrophages activated with dermal fibroblast-derived exosomes from SSc patients upregulated surface expression of CD163, CD206, MHC Class II and CD16 and secreted increased levels of IL-6, IL-10, IL-12p40 and TNF compared with macrophages incubated with healthy control fibroblasts (n = 7, P < 0.05). Exosome-stimulated macrophages and SSc fibroblasts engaged in reciprocal activation, as production of collagen and fibronectin was significantly increased in SSc fibroblasts receiving signals from SSc exosome-stimulated macrophages (n = 7, P < 0.05). CONCLUSION: In this work, we demonstrate for the first time that human SSc dermal fibroblasts mediate macrophage activation through exosomes. Our findings suggest that macrophages and fibroblasts engage in cross-talk in SSc skin, resulting in mutual activation, inflammation, and extracellular matrix (ECM) deposition. Collectively, these studies implicate macrophages and fibroblasts as cooperative mediators of fibrosis in SSc and suggest therapeutic targeting of both cell types may provide maximal benefit in ameliorating disease in SSc patients.


Assuntos
Exossomos , Escleroderma Sistêmico , Humanos , Ativação de Macrófagos , Escleroderma Sistêmico/patologia , Pele/patologia , Fibrose , Células Cultivadas , Inflamação/metabolismo , Fibroblastos/metabolismo
4.
Exp Dermatol ; 32(4): 379-391, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36398464

RESUMO

Chemokines are a group of small proteins that induce chemoattraction and inflammation and contribute to the differentiation and homeostasis of various cell types. Here we explored the role of chemokines, extracellular matrix production, and myofibroblast differentiation in self-assembled skin equivalents (SASE), a three-dimensional (3D) skin-equivalent tissue model. We found that the expression of three chemokines, C-C motif chemokine ligand (CCL) 20, C-X-C motif chemokine ligand (CXCL) 5, and CXCL8, increased with differentiation to myofibroblasts. Addition of recombinant CCL20 to human skin fibroblast induced collagen Type I alpha 2 gene expression, but did not affect the expression of alpha smooth muscle actin expression. Conversely, siRNA gene knockdown of CCL20 effectively inhibited the expression of collagen Type I gene and protein. Furthermore, when the CCL20 gene in fibroblasts was knocked down in SASE, collagen Type I synthesis and stromal thickness were decreased. Taken together, these results have indicated the utility of SASE in understanding how cytokines such as CCL20 positively regulate extracellular matrix proteins such as collagen Type I production during myofibroblast differentiation in 3D tissues that mimic human skin.


Assuntos
Quimiocinas CC , Colágeno Tipo I , Humanos , Quimiocinas CC/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ligantes , Pele/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Diferenciação Celular/fisiologia , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Células Cultivadas , Actinas/metabolismo
5.
Biochem Biophys Res Commun ; 635: 227-235, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36283335

RESUMO

TREM2 (Triggering receptor expressed on myeloid cells 2) is the causative gene for Nasu-Hakola disease, which is characterized by multiple bone cysts and leukoencephalopathy. In addition, mutations in this gene have been found to be correlated with the onset of Alzheimer's disease. TREM2 is an immunoreceptor expressed on dendritic cells, microglia, osteoclasts, and macrophages. TREM2 on the cell membrane is shed by some proteases and released as soluble TREM2 (sTREM2). Meanwhile, several TREM2 ligands have been reported, and lipopolysaccharide (LPS) is one of the candidates. Using RNA interference to examine TREM2-mediated LPS response in macrophages, we identified five chemokines whose expression was induced via TREM2. Furthermore, we showed that LPS-induced expression of CXC-motif chemokine ligand (Cxcl10) and Cxcl11 among the five chemokines was mediated in part through sTREM2. These results suggest that sTREM2 has cytokine-like functions in macrophages.


Assuntos
Doença de Alzheimer , Quimiocinas CXC , Glicoproteínas de Membrana , Receptores Imunológicos , Animais , Camundongos , Doença de Alzheimer/metabolismo , Proteínas de Transporte/metabolismo , Quimiocinas CXC/metabolismo , Ligantes , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Osteoclastos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
Exp Dermatol ; 30(8): 1065-1072, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114688

RESUMO

Diabetic foot ulcers (DFUs), a prevalent complication of diabetes, constitute a major medical challenge with a critical need for development of cell-based therapies. We previously generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts derived from the DFU patients, location-matched skin of diabetic patients and normal healthy donors and re-differentiated them into fibroblasts. To assess the epigenetic microRNA (miR) regulated changes triggered by cellular reprogramming, we performed miRs expression profiling. We found let-7c, miR-26b-5p, -29c-3p, -148a-3p, -196a-5p, -199b-5p and -374a-5p suppressed in iPSC-derived fibroblasts in vitro and in 3D dermis-like self-assembly tissue, whereas their corresponding targets involved in cellular migration were upregulated. Moreover, targets involved in organization of extracellular matrix were induced after fibroblast reprogramming. PLAT gene, the crucial fibrinolysis factor, was upregulated in iPSC-derived fibroblasts and was confirmed as a direct target of miR-196a-5p. miR-197-3p and miR-331-3p were found upregulated specifically in iPSC-derived diabetic fibroblasts, while their targets CAV1 and CDKN3 were suppressed. CAV1, an important negative regulator of wound healing, was confirmed as a direct miR-197-3p target. Together, our findings demonstrate that iPSC reprogramming is an effective approach for erasing the diabetic non-healing miR-mediated epigenetic signature and promoting a pro-healing cellular phenotype.


Assuntos
Reprogramação Celular/genética , Pé Diabético/genética , Epigênese Genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , Cicatrização/genética , Movimento Celular/genética , Humanos , Regulação para Cima
7.
FASEB J ; 33(1): 1262-1277, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30088952

RESUMO

Diabetic foot ulcers (DFUs) are a major complication of diabetes, and there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Induced pluripotent stem cells (iPSCs) offer a replenishing source of allogeneic and autologous cell types that may be beneficial to improve DFU wound-healing outcomes. However, the biologic potential of iPSC-derived cells to treat DFUs has not, to our knowledge, been investigated. Toward that goal, we have performed detailed characterization of iPSC-derived fibroblasts from both diabetic and nondiabetic patients. Significantly, gene array and functional analyses reveal that iPSC-derived fibroblasts from both patients with and those without diabetes are more similar to each other than were the primary cells from which they were derived. iPSC-derived fibroblasts showed improved migratory properties in 2-dimensional culture. iPSC-derived fibroblasts from DFUs displayed a unique biochemical composition and morphology when grown as 3-dimensional (3D), self-assembled extracellular matrix tissues, which were distinct from tissues fabricated using the parental DFU fibroblasts from which they were reprogrammed. In vivo transplantation of 3D tissues with iPSC-derived fibroblasts showed they persisted in the wound and facilitated diabetic wound closure compared with primary DFU fibroblasts. Taken together, our findings support the potential application of these iPSC-derived fibroblasts and 3D tissues to improve wound healing.-Kashpur, O., Smith, A., Gerami-Naini, B., Maione, A. G., Calabrese, R., Tellechea, A., Theocharidis, G., Liang, L., Pastar, I., Tomic-Canic, M., Mooney, D., Veves, A., Garlick, J. A. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.


Assuntos
Diferenciação Celular , Pé Diabético/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Pé Diabético/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos SCID , Fenótipo , Cicatrização/genética
8.
Lab Invest ; 99(4): 514-527, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30568176

RESUMO

Cutaneous fibrosis is a common complication seen in mixed connective tissue diseases. It often occurs as a result of TGF-ß-induced deposition of excessive amounts of collagen in the skin. Lysyl oxidases (LOXs), a family of extracellular matrix (ECM)-modifying enzymes responsible for collagen cross-linking, are known to be increased in dermal fibroblasts from patients with fibrotic diseases, denoting a possible role of LOXs in fibrosis. To directly study this, we have developed two bioengineered, in vitro skin-like models: human skin equivalents (hSEs), and self-assembled stromal tissues (SASs) that contain either normal or systemic sclerosis (SSc; scleroderma) patient-derived fibroblasts. These tissues provide an organ-level structure that could be combined with non-invasive, label-free, multiphoton microscopy (SHG/TPEF) to reveal alterations in the organization and cross-linking levels of collagen fibers during the development of cutaneous fibrosis, which demonstrated increased stromal rigidity and activation of dermal fibroblasts in response to TGF-ß1. Specifically, inhibition of specific LOXs isoforms, LOX and LOXL4, in foreskin fibroblasts (HFFs) resulted in antagonistic effects on TGF-ß1-induced fibrogenic hallmarks in both hSEs and SASs. In addition, a translational relevance of these models was seen as similar antifibrogenic phenotypes were achieved upon knocking down LOXL4 in tissues containing SSc patient-derived-dermal fibroblasts (SScDFs). These findings point to a pivotal role of LOXs in TGF-ß1-induced cutaneous fibrosis through impaired ECM homeostasis in skin-like tissues, and show the value of these tissue platforms in accelerating the discovery of antifibrosis therapeutics.


Assuntos
Fibroblastos/metabolismo , Fibrose/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Aminoácido Oxirredutases/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Fibroblastos/citologia , Humanos , Modelos Biológicos , Fenótipo , Pele/citologia , Pele/metabolismo
9.
Int J Food Sci Nutr ; 68(6): 712-718, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28122479

RESUMO

Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.


Assuntos
Antioxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Pistacia/química , Protetores contra Radiação/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Luteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Raios Ultravioleta/efeitos adversos , gama-Tocoferol/farmacologia
10.
Wound Repair Regen ; 24(4): 630-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27102877

RESUMO

Current chronic wound treatments often fail to promote healing of diabetic foot ulcers (DFU), leading to amputation and increased patient morbidity. A critical mediator of proper wound healing is the production, assembly, and remodeling of the extracellular matrix (ECM) by fibroblasts. However, little is known about how these processes are altered in fibroblasts within the DFU microenvironment. Thus, we investigated the capacity of multiple, primary DFU-derived fibroblast strains to express, produce, and assemble ECM proteins compared to diabetic patient-derived fibroblasts and healthy donor-derived fibroblasts. Gene expression microarray analysis showed differential expression of ECM and ECM-regulatory genes by DFU-derived fibroblasts which translated to functional differences in a 3D in vitro ECM tissue model. DFU-derived fibroblasts produced thin, fibronectin-rich matrices, and responded abnormally when challenged with transforming growth factor-beta, a key regulator of matrix production during healing. These results provide novel evidence that DFU-derived fibroblasts contribute to the defective matrices of DFUs and chronic wound pathogenesis.


Assuntos
Pé Diabético/patologia , Pé Diabético/fisiopatologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Cicatrização , Colágeno Tipo I/metabolismo , Pé Diabético/metabolismo , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Análise em Microsséries , Neovascularização Fisiológica , Fator de Crescimento Transformador beta/farmacologia
11.
Wound Repair Regen ; 24(6): 943-953, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27607190

RESUMO

Diabetic foot ulcers (DFUs) are one of the major complications of diabetes. Its molecular pathology remains poorly understood, impeding the development of effective treatments. Although it has been established that multiple cell types, including fibroblasts, keratinocytes, macrophages, and endothelial cells, all contribute to inhibition of healing, less is known regarding contributions of individual cell type. Thus, we generated primary fibroblasts from nonhealing DFUs and evaluated their cellular and molecular properties in comparison to nondiabetic foot fibroblasts (NFFs). Specifically, we analyzed both micro-RNA and mRNA expression profiles of primary DFU fibroblasts. Paired genomic analyses identified a total of 331 reciprocal miRNA-mRNA pairs including 21 miRNAs (FC > 2.0) along with 239 predicted target genes (FC > 1.5) that are significantly and differentially expressed. Of these, we focused on three miRNAs (miR-21-5p, miR-34a-5p, miR-145-5p) that were induced in DFU fibroblasts as most differentially regulated. The involvement of these microRNAs in wound healing was investigated by testing the expression of their downstream targets as well as by quantifying cellular behaviors in prospectively collected and generated cell lines from 15 patients (seven DFUF and eight NFF samples). We found large number of downstream targets of miR-21-5p, miR-34a-5p, miR-145-5p to be coordinately regulated in mRNA profiles, which was confirmed by quantitative real-time PCR. Pathway analysis on paired miRNA-mRNA profiles predicted inhibition of cell movement and cell proliferation, as well as activation of cell differentiation and senescence in DFU fibroblasts, which was confirmed by cellular assays. We concluded that induction of miR-21-5p, miR-34a-5p, miR-145-5p in DFU dermal fibroblasts plays an important role in impairing multiple cellular functions, thus contributing to overall inhibition of healing in DFUs.


Assuntos
Pé Diabético/genética , Pé Diabético/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Cicatrização , Western Blotting , Diferenciação Celular , Senescência Celular , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Análise em Microsséries , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 109(8): 2772-7, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21940501

RESUMO

Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM(+)) and basal/myoepithelial (CD10(+)). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM(+) epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10(+) cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10(+) breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues.


Assuntos
Neoplasias da Mama/patologia , Transformação Celular Neoplásica/patologia , Adulto , Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/metabolismo , Moléculas de Adesão Celular/metabolismo , Transformação Celular Neoplásica/metabolismo , Molécula de Adesão da Célula Epitelial , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Metaplasia , Neprilisina/metabolismo , Fenótipo
13.
J Cell Sci ; 125(Pt 9): 2276-87, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22344267

RESUMO

Platelet-derived growth factor receptor-beta (PDGFRß) is required for the development of mesenchymal cell types, and plays a diverse role in the function of fibroblasts in tissue homeostasis and regeneration. In this study, we characterized the expression of PDGFRß in fibroblasts derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), and showed that this expression is important for cellular functions such as migration, extracellular matrix production and assembly in 3D self-assembled tissues. To determine potential regulatory regions predictive of expression of PDGFRß following differentiation from ESCs and iPSCs, we analyzed the DNA methylation status of a region of the PDGFRB promoter that contains multiple CpG sites, before and after differentiation. We demonstrated that this promoter region is extensively demethylated following differentiation, and represents a developmentally regulated, differentially methylated region linked to PDGFRß expression. Understanding the epigenetic regulation of genes such as PDGFRB, and identifying sites of active DNA demethylation, is essential for future applications of iPSC-derived fibroblasts for regenerative medicine.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Fibroblastos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Movimento Celular/genética , Ilhas de CpG/genética , DNA/análise , DNA/química , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Regiões Promotoras Genéticas
14.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585776

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease characterized by skin fibrosis, internal organ involvement and vascular dropout. We previously developed and phenotypically characterized an in vitro 3D skin-like tissue model of SSc, and now analyze the transcriptomic (scRNA-seq) and epigenetic (scATAC-seq) characteristics of this model at single-cell resolution. SSc 3D skin-like tissues were fabricated using autologous fibroblasts, macrophages, and plasma from SSc patients or healthy control (HC) donors. SSc tissues displayed increased dermal thickness and contractility, as well as increased α-SMA staining. Single-cell transcriptomic and epigenomic analyses identified keratinocytes, macrophages, and five populations of fibroblasts (labeled FB1 - 5). Notably, FB1 APOE-expressing fibroblasts were 12-fold enriched in SSc tissues and were characterized by high EGR1 motif accessibility. Pseudotime analysis suggests that FB1 fibroblasts differentiate from a TGF-ß1-responsive fibroblast population and ligand-receptor analysis indicates that the FB1 fibroblasts are active in macrophage crosstalk via soluble ligands including FGF2 and APP. These findings provide characterization of the 3D skin-like model at single cell resolution and establish that it recapitulates subsets of fibroblasts and macrophage phenotypes observed in skin biopsies.

15.
Arthritis Rheumatol ; 74(7): 1245-1256, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35212485

RESUMO

OBJECTIVE: The development of precision therapeutics for systemic sclerosis (SSc) has been hindered by the lack of models that accurately mimic the disease in vitro. This study was undertaken to design and test a self-assembled skin equivalent (saSE) system that recapitulates the cross-talk between macrophages and fibroblasts in cutaneous fibrosis. METHODS: SSc-derived dermal fibroblasts (SScDFs) and normal dermal fibroblasts (NDFs) were cultured with CD14+ monocytes from SSc patients or healthy controls to allow de novo stroma formation. Monocyte donor-matched plasma was introduced at week 3 prior to seeding keratinocytes to produce saSE with a stratified epithelium. Tissue was characterized by immunohistochemical staining, atomic force microscopy, enzyme-linked immunosorbent assay, and quantitative reverse transcriptase-polymerase chain reaction. RESULTS: Stroma synthesized de novo from NDFs and SScDFs supported a fully stratified epithelium to form saSE. A thicker and stiffer dermis was generated by saSE with SScDFs, and more interleukin-6 and transforming growth factor ß (TGFß) was secreted by saSE with SScDFs compared to saSE with NDFs, regardless of the inclusion of monocytes. Tissue with SSc monocytes and plasma had amplified dermal thickness and stiffness relative to control tissue. Viable CD163+ macrophages were found within the stroma of saSE 5 weeks after seeding. Additionally, SSc saSE contained greater numbers of CD163+ and CD206+ macrophages compared to control saSE. TGFß blockade inhibited stromal stiffness to a greater extent in SSc saSE compared to control saSE. CONCLUSION: These data suggest reciprocal activation between macrophages and fibroblasts that increases tissue thickness and stiffness, which is dependent in part on TGFß activation. The saSE system may serve as a platform for preclinical therapeutic testing and for molecular characterization of SSc skin pathology through recapitulation of the interactions between macrophages and fibroblasts.


Assuntos
Ativação de Macrófagos , Escleroderma Sistêmico , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Humanos , Escleroderma Sistêmico/patologia , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo
16.
Adv Nanobiomed Res ; 2(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36532145

RESUMO

Diabetic foot ulcers (DFU) are chronic wounds sustained by pathological fibroblasts and aberrant extracellular matrix (ECM). Porous collagen-based scaffolds (CS) have shown clinical promise for treating DFUs but may benefit from functional enhancements. Our previous work showed fibroblasts differentiated from induced pluripotent stem cells are an effective source of new ECM mimicking fetal matrix, which notably promotes scar-free healing. Likewise, functionalizing CS with this rejuvenated ECM showed potential for DFU healing. Here, we demonstrate for the first time an approach to DFU healing using biopsied cells from DFU patients, reprogramming those cells, and functionalizing CS with patient-specific ECM as a personalized acellular tissue engineered scaffold. We took a two-pronged approach: 1) direct ECM blending into scaffold fabrication; and 2) seeding scaffolds with reprogrammed fibroblasts for ECM deposition followed by decellularization. The decellularization approach reduced cell number requirements and maintained naturally deposited ECM proteins. Both approaches showed enhanced ECM deposition from DFU fibroblasts. Decellularized scaffolds additionally enhanced glycosaminoglycan deposition and subsequent vascularization. Finally, reprogrammed ECM scaffolds from patient-matched DFU fibroblasts outperformed those from healthy fibroblasts in several metrics, suggesting ECM is in fact able to redirect resident pathological fibroblasts in DFUs towards healing, and a patient-specific ECM signature may be beneficial.

17.
J Biomed Mater Res A ; 109(10): 1803-1811, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755305

RESUMO

Extracellular matrix is a key component of all tissues, including skin and it plays a crucial role in the complex events of wound healing. These events are impaired in chronic wounds, with chronic inflammation and infection often present in these non-healing wounds. Many tissue engineering approaches for wound healing provide a scaffold to mimic the native matrix. Fibroblasts derived from iPS cells (iPSF) represent a novel source of matrix rich in pro-regenerative components, which can be used for scaffold fabrication to improve wound healing. However, in vitro production of matrix by cells for scaffold fabrication requires long cell culturing times which increases cost. The aim of this work is to optimize the iPSF matrix production by boosting matrix deposition, without affecting its composition. A good candidate technique to achieve this goal is macromolecular crowding, which is known to promote conversion of procollagen into mature collagen and its accumulation. We tested two molecular crowders, Ficoll and Carrageenan-in combination with ascorbic acid-over a prolonged period of time. Ficoll in combination with ascorbic acid notably increased collagen deposition and matrix dry weight compared to ascorbic acid alone, and did not affect matrix composition as measured by RT-PCR. Interestingly, Carrageenan did not affect collagen quantity, but it significantly increased glycosaminoglycan deposition. Finally, we successfully fabricated scaffolds from harvested matrix and confirmed their ability for cell growth and viability. This work lays the foundation for development of a time and cost effective protocol for novel iPSF ECM production for tissue engineering scaffolds.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Cicatrização , Animais , Bovinos , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Substâncias Macromoleculares/metabolismo
18.
Tissue Eng Part C Methods ; 27(2): 49-58, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33280487

RESUMO

A major challenge in the management of patients suffering from diabetes is the risk of developing nonhealing foot ulcers. Most in vitro methods to screen drugs for wound healing therapies rely on conventional 2D cell cultures that do not closely mimic the complexity of the diabetic wound environment. In addition, while three-dimensional (3D) skin tissue models of human skin exist, they have not previously been adapted to incorporate patient-derived macrophages to model inflammation from these wounds. In this study, we present a 3D human skin equivalent (HSE) model incorporating blood-derived monocytes and primary fibroblasts isolated from patients with diabetic foot ulcers (DFUs). We demonstrate that the monocytes differentiate into macrophages when incorporated into HSEs and secrete a cytokine profile indicative of the proinflammatory M1 phenotype seen in DFUs. We also show how the interaction between fibroblasts and macrophages in the HSE can guide macrophage polarization. Our findings take us a step closer to creating a human, 3D skin-like tissue model that can be applied to evaluate the response of candidate compounds needed for potential new foot ulcer therapies in a more complex tissue environment that contributes to diabetic wounds. Impact statement This study is the first to incorporate disease-specific, diabetic macrophages into a three-dimensional (3D) model of human skin. We show how to fabricate skin that incorporates macrophages with disease-specific fibroblasts to guide macrophage polarization. We also show that monocytes from diabetic patients can differentiate into macrophages directly in this skin disease model, and that they secrete a cytokine profile mimicking the proinflammatory M1 phenotype seen in diabetic foot ulcers. The data presented here indicate that this 3D skin disease model can be used to study macrophage-related inflammation in diabetes and as a drug testing tool to evaluate new treatments for the disease.


Assuntos
Diabetes Mellitus , Pé Diabético , Fibroblastos , Humanos , Macrófagos , Pele , Cicatrização
19.
J Mech Behav Biomed Mater ; 114: 104174, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191173

RESUMO

Tissue engineering products, like collagen-glycosaminoglycan scaffolds, have been successfully applied to chondrogenic defects. Inducible Pluripotent Stem cell (iPS) technology allows reprograming of somatic cells into an embryonic-like state, allowing for redifferentiation. We postulated that a fibroblast cell line (BJ cells - 'pre-iPSF') cycled through iPS reprogramming and redifferentiated into fibroblasts (post-iPSF) could lubricate collagen-glycosaminoglycan scaffolds; fibroblasts are known to produce lubricating molecules (e.g., lubricin) in the synovium. Herein, we quantified the coefficient of friction (CoF) of collagen-glycosaminoglycan scaffolds seeded with post-iPSF; tested whether cell-free scaffolds made of post-iPSF derived extracellular matrix had reduced friction vs. pre-iPSF; and assessed lubricin quantity as a possible protein responsible for lubrication. Post-iPSF seeded CG had 6- to 10-fold lower CoF versus pre-iPSF. Scaffolds consisting of a collagen and pre-/post-iPSF extracellular matrix blend outperformed these cell-seeded scaffolds (~5-fold lower CoF), yielding excellent CoF values close to synovial fluid. Staining revealed an increased presence of lubricin within post-iPSF scaffolds (confirmed by western blotting) and on the surface of iPSF-seeded collagen-glycosaminoglycan scaffolds. Interestingly, when primary cells from patient biopsy-derived fibroblasts were used, iPS reprogramming did not further reduce the already low CoF of these cells and no lubricin expression was found. We conclude that iPS reprogramming activates lubricating properties in iPS-derived cells in a source cell-specific manner. Additionally, lubricin appears to play a lubricating role, yet other proteins also contribute to lubrication. This work constitutes an important step for understanding post-iPSF lubrication of scaffolds and its potential for cartilage tissue engineering.


Assuntos
Condrogênese , Colágeno , Células-Tronco Pluripotentes , Alicerces Teciduais , Cartilagem , Fibroblastos , Humanos
20.
J Tissue Eng Regen Med ; 14(8): 1019-1027, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32483913

RESUMO

Three-dimensional (3D) tissue models of human skin are being developed to better understand disease phenotypes and to screen new drugs for potential therapies. Several factors will increase the value of these in vitro 3D skin tissues for these purposes. These include the need for human-derived extracellular matrix (ECM), higher throughput tissue formats, and greater cellular complexity. Here, we present an approach for the fabrication of 3D skin-like tissues as a platform that addresses these three considerations. We demonstrate that human adult and neonatal fibroblasts deposit an endogenous ECM de novo that serves as an effective stroma for full epithelial tissue development and differentiation. We have miniaturized these tissues to a 24-well format to adapt them for eventual higher throughput drug screening. We have shown that monocytes from the peripheral blood can be incorporated into this model as macrophages to increase tissue complexity. This humanized skin-like tissue decreases dependency on animal-derived ECM while increasing cellular complexity that can enable screening inflammatory responses in tissue models of human skin.


Assuntos
Matriz Extracelular , Fibroblastos/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Pele , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Recém-Nascido , Masculino , Pele/química , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA